BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 23000259)

  • 1. Evaluation of the Physico-Chemical Properties of Liposomes Assembled from Bioconjugates of Anisic Acid with Phosphatidylcholine.
    Pruchnik H; Gliszczyńska A; Włoch A
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregate-based sub-CMC Solubilization of
    Zhong H; Yang X; Tan F; Brusseau ML; Yang L; Liu Z; Zeng G; Yuan X
    New J Chem; 2016 Mar; 40(3):2028-2035. PubMed ID: 27547030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptotanshinone-Induced Permeabilization of Model Phospholipid Membranes: A Biophysical Study.
    Ortiz J; Aranda FJ; Teruel JA; Ortiz A
    Membranes (Basel); 2024 May; 14(6):. PubMed ID: 38921485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioformulation of
    Mukadam H; Gaikwad SV; Kutty NN; Gaikwad VD
    Front Bioeng Biotechnol; 2024; 12():1362679. PubMed ID: 38707507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Natural Rhamnolipid Mixture on Dioleoylphosphatidylcholine Model Membrane Depending on Method of Preparation and Sterol Content.
    Potapov K; Gordeev A; Biktasheva L; Rudakova M; Alexandrov A
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosurfactants' multifarious functional potential for sustainable agricultural practices.
    Karamchandani BM; Pawar AA; Pawar SS; Syed S; Mone NS; Dalvi SG; Rahman PKSM; Banat IM; Satpute SK
    Front Bioeng Biotechnol; 2022; 10():1047279. PubMed ID: 36578512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate
    Schellenberger R; Crouzet J; Nickzad A; Shu LJ; Kutschera A; Gerster T; Borie N; Dawid C; Cloutier M; Villaume S; Dhondt-Cordelier S; Hubert J; Cordelier S; Mazeyrat-Gourbeyre F; Schmid C; Ongena M; Renault JH; Haudrechy A; Hofmann T; Baillieul F; Clément C; Zipfel C; Gauthier C; Déziel E; Ranf S; Dorey S
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34561304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and Lipopeptides Case Study.
    Crouzet J; Arguelles-Arias A; Dhondt-Cordelier S; Cordelier S; Pršić J; Hoff G; Mazeyrat-Gourbeyre F; Baillieul F; Clément C; Ongena M; Dorey S
    Front Bioeng Biotechnol; 2020; 8():1014. PubMed ID: 33015005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions and Limitations of Biophysical Approaches to Study of the Interactions between Amphiphilic Molecules and the Plant Plasma Membrane.
    Furlan AL; Laurin Y; Botcazon C; Rodríguez-Moraga N; Rippa S; Deleu M; Lins L; Sarazin C; Buchoux S
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32443858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Dual Interaction of Natural Rhamnolipids with Plant and Fungal Biomimetic Plasma Membranes through Biophysical Studies.
    Monnier N; Furlan AL; Buchoux S; Deleu M; Dauchez M; Rippa S; Sarazin C
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microemulsion synthesis of silver nanoparticles using biosurfactant extracted from
    Das M; Patowary K; Vidya R; Malipeddi H
    IET Nanobiotechnol; 2016 Dec; 10(6):411-418. PubMed ID: 27906143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of a bacterial dirhamnolipid with phosphatidylcholine membranes: a biophysical study.
    Sánchez M; Aranda FJ; Teruel JA; Ortiz A
    Chem Phys Lipids; 2009 Sep; 161(1):51-5. PubMed ID: 19580793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical characterization of a monorhamnolipid secreted by Pseudomonas aeruginosa MA01 in aqueous media. An experimental and molecular dynamics study.
    Abbasi H; Noghabi KA; Hamedi MM; Zahiri HS; Moosavi-Movahedi AA; Amanlou M; Teruel JA; Ortiz A
    Colloids Surf B Biointerfaces; 2013 Jan; 101():256-65. PubMed ID: 23010028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of dirhamnolipid biosurfactants with phospholipid membranes: a molecular level study.
    Ortiz A; Aranda FJ; Teruel JA
    Adv Exp Med Biol; 2010; 672():42-53. PubMed ID: 20545272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared spectroscopy of glycolipids.
    Brandenburg K; Seydel U
    Chem Phys Lipids; 1998 Nov; 96(1-2):23-40. PubMed ID: 9871980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of a bacterial monorhamnolipid secreted by Pseudomonas aeruginosa MA01 with phosphatidylcholine model membranes.
    Abbasi H; Noghabi KA; Ortiz A
    Chem Phys Lipids; 2012 Oct; 165(7):745-52. PubMed ID: 23000259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bacterial monorhamnolipid alters the biophysical properties of phosphatidylethanolamine model membranes.
    Abbasi H; Aranda FJ; Noghabi KA; Ortiz A
    Biochim Biophys Acta; 2013 Sep; 1828(9):2083-90. PubMed ID: 23643890
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.