BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23000259)

  • 21. Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes.
    Ortiz A; Teruel JA; Espuny MJ; Marqués A; Manresa A; Aranda FJ
    Chem Phys Lipids; 2009 Mar; 158(1):46-53. PubMed ID: 19046957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of an acidic sophorolipid biosurfactant with phosphatidylcholine model membranes.
    Franco Marcelino PR; Ortiz J; da Silva SS; Ortiz A
    Colloids Surf B Biointerfaces; 2021 Nov; 207():112029. PubMed ID: 34399158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of a synthetic antitumoral catechin and its tyrosinase-processed product on the structural properties of phosphatidylcholine membranes.
    How CW; Teruel JA; Ortiz A; Montenegro MF; Rodríguez-López JN; Aranda FJ
    Biochim Biophys Acta; 2014 May; 1838(5):1215-24. PubMed ID: 24518157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural polymorphism of hydrated monoacylated maltose glycolipids.
    Howe J; Garidel P; Wulf M; Gerber S; Milkereit G; Vill V; Roessle M; Brandenburg K
    Chem Phys Lipids; 2008 Sep; 155(1):31-7. PubMed ID: 18671955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies.
    Bilge D; Sahin I; Kazanci N; Severcan F
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():250-6. PubMed ID: 24792199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of cholesterol on phospholipid membranes: inhibition of the interdigitated gel phase of F-DPPC and F-DPPC/DPPC.
    Smith EA; Wang W; Dea PK
    Chem Phys Lipids; 2012 Feb; 165(2):151-9. PubMed ID: 22200532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study by infrared spectroscopy of the interdigitation of C26:0 cerebroside sulfate into phosphatidylcholine bilayers.
    Nabet A; Boggs JM; Pézolet M
    Biochemistry; 1996 May; 35(21):6674-83. PubMed ID: 8639617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of cholesterol on dry bilayers: interactions between phosphatidylcholine unsaturation and glycolipid or free sugar.
    Popova AV; Hincha DK
    Biophys J; 2007 Aug; 93(4):1204-14. PubMed ID: 17526577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organotin compounds alter the physical organization of phosphatidylcholine membranes.
    Chicano JJ; Ortiz A; Teruel JA; Aranda FJ
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):330-41. PubMed ID: 11342170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Properties of ternary phospholipid/dimethyl sulfoxide/water systems at low temperatures.
    Kiselev MA; Gutberlet T; Lesieur P; Hauss T; Ollivon M; Neubert RH
    Chem Phys Lipids; 2005 Feb; 133(2):181-93. PubMed ID: 15642586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces.
    Zhong H; Jiang Y; Zeng G; Liu Z; Liu L; Liu Y; Yang X; Lai M; He Y
    J Hazard Mater; 2015 Mar; 285():383-8. PubMed ID: 25528238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes.
    González-Jaramillo LM; Aranda FJ; Teruel JA; Villegas-Escobar V; Ortiz A
    Colloids Surf B Biointerfaces; 2017 Aug; 156():114-122. PubMed ID: 28527355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of 4-tert-butyl-[3-(2-chloroethyl) ureido] benzene with phosphatidylcholine bilayers: a differential scanning calorimetry and infrared spectroscopy study.
    Gicquad C; Auger M; Wong TT; Poyet P; Boudreau N; C-Gaudreault R
    Arch Biochem Biophys; 1996 Oct; 334(2):193-9. PubMed ID: 8900392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An X-ray diffraction and differential scanning calorimetric study on the effect of sucrose on the properties of phosphatidylcholine bilayers.
    Stümpel J; Vaz WL; Hallmann D
    Biochim Biophys Acta; 1985 Nov; 821(1):165-8. PubMed ID: 4063357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site of action of the local anesthetic tetracaine in a phosphatidylcholine bilayer with incorporated cardiolipin.
    Shibata A; Ikawa K; Terada H
    Biophys J; 1995 Aug; 69(2):470-7. PubMed ID: 8527661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of a bacterial trehalose lipid on phosphatidylglycerol membranes.
    Ortiz A; Teruel JA; Manresa Á; Espuny MJ; Marqués A; Aranda FJ
    Biochim Biophys Acta; 2011 Aug; 1808(8):2067-72. PubMed ID: 21600191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the Physico-Chemical Properties of Liposomes Assembled from Bioconjugates of Anisic Acid with Phosphatidylcholine.
    Pruchnik H; Gliszczyńska A; Włoch A
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new method for determining the phase in the X-ray diffraction structure analysis of phosphatidylcholine/alcohol.
    Adachi T
    Chem Phys Lipids; 2000 Sep; 107(1):93-7. PubMed ID: 10974233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reorganization of Hydration Water of DPPC Multilamellar Vesicles Induced by l-Cysteine Interaction.
    Arias JM; Tuttolomondo ME; Díaz SB; Ben Altabef A
    J Phys Chem B; 2018 May; 122(20):5193-5204. PubMed ID: 29717612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.