These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 2300044)
1. Detection of site-specific binding and co-binding of ligands to human serum albumin using 19F NMR. Jenkins BG; Lauffer RB Mol Pharmacol; 1990 Jan; 37(1):111-8. PubMed ID: 2300044 [TBL] [Abstract][Full Text] [Related]
2. Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements. Cui YF; Bai GY; Li CG; Ye CH; Liu ML J Pharm Biomed Anal; 2004 Feb; 34(2):247-54. PubMed ID: 15013138 [TBL] [Abstract][Full Text] [Related]
3. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. Simard JR; Zunszain PA; Hamilton JA; Curry S J Mol Biol; 2006 Aug; 361(2):336-51. PubMed ID: 16844140 [TBL] [Abstract][Full Text] [Related]
4. Determining molecular binding sites on human serum albumin by displacement of oleic acid. Sarver RW; Gao H; Tian F Anal Biochem; 2005 Dec; 347(2):297-302. PubMed ID: 16289007 [TBL] [Abstract][Full Text] [Related]
5. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands. Kragh-Hansen U Mol Pharmacol; 1988 Aug; 34(2):160-71. PubMed ID: 3412320 [TBL] [Abstract][Full Text] [Related]
6. Allosteric and binding properties of Asp1-Glu382 truncated recombinant human serum albumin--an optical and NMR spectroscopic investigation. Fanali G; Pariani G; Ascenzi P; Fasano M FEBS J; 2009 Apr; 276(8):2241-50. PubMed ID: 19298387 [TBL] [Abstract][Full Text] [Related]
7. Allostery in a monomeric protein: the case of human serum albumin. Ascenzi P; Fasano M Biophys Chem; 2010 May; 148(1-3):16-22. PubMed ID: 20346571 [TBL] [Abstract][Full Text] [Related]
8. Use of 19F NMR spectroscopy to screen chemical libraries for ligands that bind to proteins. Tengel T; Fex T; Emtenas H; Almqvist F; Sethson I; Kihlberg J Org Biomol Chem; 2004 Mar; 2(5):725-31. PubMed ID: 14985813 [TBL] [Abstract][Full Text] [Related]
9. 19F NMR spectroscopic study on the binding of triflupromazine to bovine and human serum albumins. Kitamura K; Kume M; Yamamoto M; Takegami S; Kitade T J Pharm Biomed Anal; 2004 Oct; 36(2):411-4. PubMed ID: 15496337 [TBL] [Abstract][Full Text] [Related]
10. Epitope mapping and competitive binding of HSA drug site II ligands by NMR diffusion measurements. Lucas LH; Price KE; Larive CK J Am Chem Soc; 2004 Nov; 126(43):14258-66. PubMed ID: 15506793 [TBL] [Abstract][Full Text] [Related]
11. Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems. Fielding L; Rutherford S; Fletcher D Magn Reson Chem; 2005 Jun; 43(6):463-70. PubMed ID: 15816062 [TBL] [Abstract][Full Text] [Related]
12. Allosteric modulation of myristate and Mn(III)heme binding to human serum albumin. Optical and NMR spectroscopy characterization. Fanali G; Fesce R; Agrati C; Ascenzi P; Fasano M FEBS J; 2005 Sep; 272(18):4672-83. PubMed ID: 16156788 [TBL] [Abstract][Full Text] [Related]
13. Binding of diuretic antihypertensive bendroflumethiazide to human serum albumin studied by ¹⁹F nuclear magnetic resonance method. Kitamura K; Niinobu M; Omran AA; Takegami S; Kitade T Eur J Pharm Sci; 2012 Jan; 45(1-2):195-200. PubMed ID: 22115868 [TBL] [Abstract][Full Text] [Related]
14. Interactions between quercetin and warfarin for albumin binding: A new eye on food/drug interference. Di Bari L; Ripoli S; Pradhan S; Salvadori P Chirality; 2010 Jun; 22(6):593-6. PubMed ID: 19902529 [TBL] [Abstract][Full Text] [Related]
15. Binding of warfarin influences the acid-base equilibrium of H242 in sudlow site I of human serum albumin. Perry JL; Goldsmith MR; Williams TR; Radack KP; Christensen T; Gorham J; Pasquinelli MA; Toone EJ; Beratan DN; Simon JD Photochem Photobiol; 2006; 82(5):1365-9. PubMed ID: 16563025 [TBL] [Abstract][Full Text] [Related]
16. Characterization of drug-protein binding process by employing equilibrium sampling through hollow-fiber supported liquid membrane and Bjerrum and Scatchard plots. Barri T; Trtić-Petrović T; Karlsson M; Jönsson JA J Pharm Biomed Anal; 2008 Sep; 48(1):49-56. PubMed ID: 18565712 [TBL] [Abstract][Full Text] [Related]
17. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands. Decatur SM; DePillis GD; Boxer SG Biochemistry; 1996 Apr; 35(13):3925-32. PubMed ID: 8672423 [TBL] [Abstract][Full Text] [Related]
18. Saturation transfer difference nuclear magnetic resonance study on the specific binding of ligand to protein. Ji Z; Yao Z; Liu M Anal Biochem; 2009 Feb; 385(2):380-2. PubMed ID: 19070584 [TBL] [Abstract][Full Text] [Related]
19. Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligand-protein interactions. Deeb O; Rosales-Hernández MC; Gómez-Castro C; Garduño-Juárez R; Correa-Basurto J Biopolymers; 2010 Feb; 93(2):161-70. PubMed ID: 19785033 [TBL] [Abstract][Full Text] [Related]
20. Ibuprofen and warfarin modulate allosterically ferrous human serum heme-albumin nitrosylation. Ascenzi P; Cao Y; Tundo GR; Coletta M; Fanali G; Fasano M Biochem Biophys Res Commun; 2011 Jul; 411(1):185-9. PubMed ID: 21726535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]