BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23000744)

  • 21. A minimally invasive microchip for transdermal injection/sampling applications.
    Strambini LM; Longo A; Diligenti A; Barillaro G
    Lab Chip; 2012 Sep; 12(18):3370-9. PubMed ID: 22773092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hot punching of high-aspect-ratio 3D polymeric microstructures for drug delivery.
    Petersen RS; Keller SS; Boisen A
    Lab Chip; 2015 Jun; 15(12):2576-9. PubMed ID: 25976735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of microneedles using two photon polymerization for transdermal delivery of nanomaterials.
    Doraiswamy A; Ovsianikov A; Gittard SD; Monteiro-Riviere NA; Crombez R; Montalvo E; Shen W; Chichkov BN; Narayan RJ
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6305-12. PubMed ID: 21137723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions.
    Ashraf MW; Tayyaba S; Nisar A; Afzulpurkar N; Bodhale DW; Lomas T; Poyai A; Tuantranont A
    Cardiovasc Eng; 2010 Sep; 10(3):91-108. PubMed ID: 20730492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous on-chip micropumping for microneedle enhanced drug delivery.
    Zahn JD; Deshmukh A; Pisano AP; Liepmann D
    Biomed Microdevices; 2004 Sep; 6(3):183-90. PubMed ID: 15377827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination.
    Hegde NR; Kaveri SV; Bayry J
    Drug Discov Today; 2011 Dec; 16(23-24):1061-8. PubMed ID: 21782969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Application of MEMS microneedles array in biomedicine].
    Liu R; Wang X; Zhou Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):482-5. PubMed ID: 15250162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advanced deep reactive-ion etching technology for hollow microneedles for transdermal blood sampling and drug delivery.
    Liu Y; Eng PF; Guy OJ; Roberts K; Ashraf H; Knight N
    IET Nanobiotechnol; 2013 Jun; 7(2):59-62. PubMed ID: 24046906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transdermal drug delivery by localized intervention.
    Gowrishankar TR; Herndon TO; Weaver JC
    IEEE Eng Med Biol Mag; 2009; 28(1):55-63. PubMed ID: 19150771
    [No Abstract]   [Full Text] [Related]  

  • 30. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility.
    Wu Y; Qiu Y; Zhang S; Qin G; Gao Y
    Biomed Microdevices; 2008 Oct; 10(5):601-10. PubMed ID: 18324474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Needle-free and microneedle drug delivery in children: a case for disease-modifying antirheumatic drugs (DMARDs).
    Shah UU; Roberts M; Orlu Gul M; Tuleu C; Beresford MW;
    Int J Pharm; 2011 Sep; 416(1):1-11. PubMed ID: 21767621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled transdermal delivery of model drug compounds by MEMS microneedle array.
    Xie Y; Xu B; Gao Y
    Nanomedicine; 2005 Jun; 1(2):184-90. PubMed ID: 17292077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compact, power-efficient architectures using microvalves and microsensors, for intrathecal, insulin, and other drug delivery systems.
    Li T; Evans AT; Chiravuri S; Gianchandani RY; Gianchandani YB
    Adv Drug Deliv Rev; 2012 Nov; 64(14):1639-49. PubMed ID: 22580183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro and in vivo characterization of MEMS microneedles.
    Teo MA; Shearwood C; Ng KC; Lu J; Moochhala S
    Biomed Microdevices; 2005 Mar; 7(1):47-52. PubMed ID: 15834520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel method for monolithic fabrication of polymer microneedles on a platform for transdermal drug delivery.
    Chaudhuri BP; Ceyssens F; Van Hoof C; Puers R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():156-9. PubMed ID: 24109648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery.
    Yan G; Warner KS; Zhang J; Sharma S; Gale BK
    Int J Pharm; 2010 May; 391(1-2):7-12. PubMed ID: 20188808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogel templates for the fabrication of homogeneous polymer microparticles.
    Acharya G; McDermott M; Shin SJ; Park H; Park K
    Methods Mol Biol; 2011; 726():179-85. PubMed ID: 21424450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery.
    Al-Qallaf B; Das DB
    Ann N Y Acad Sci; 2009 Apr; 1161():83-94. PubMed ID: 19426308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microneedle arrays as medical devices for enhanced transdermal drug delivery.
    Garland MJ; Migalska K; Mahmood TM; Singh TR; Woolfson AD; Donnelly RF
    Expert Rev Med Devices; 2011 Jul; 8(4):459-82. PubMed ID: 21728732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoporous microneedle arrays seamlessly connected to a drug reservoir for tunable transdermal delivery of memantine.
    Vos PJ; Kuijt N; Kaya M; Rol S; van der Maaden K
    Eur J Pharm Sci; 2020 Jul; 150():105331. PubMed ID: 32470845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.