These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 23000841)

  • 1. Drug nanocrystals in the commercial pharmaceutical development process.
    Möschwitzer JP
    Int J Pharm; 2013 Aug; 453(1):142-56. PubMed ID: 23000841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosizing techniques for improving bioavailability of drugs.
    Al-Kassas R; Bansal M; Shaw J
    J Control Release; 2017 Aug; 260():202-212. PubMed ID: 28603030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size.
    Sinha B; Müller RH; Möschwitzer JP
    Int J Pharm; 2013 Aug; 453(1):126-41. PubMed ID: 23333709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives.
    Shegokar R; Müller RH
    Int J Pharm; 2010 Oct; 399(1-2):129-39. PubMed ID: 20674732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets.
    Salazar J; Müller RH; Möschwitzer JP
    Eur J Pharm Sci; 2013 Jul; 49(4):565-77. PubMed ID: 23587645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmaceutical nanocrystals: production by wet milling and applications.
    Malamatari M; Taylor KMG; Malamataris S; Douroumis D; Kachrimanis K
    Drug Discov Today; 2018 Mar; 23(3):534-547. PubMed ID: 29326082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery.
    Pawar VK; Singh Y; Meher JG; Gupta S; Chourasia MK
    J Control Release; 2014 Jun; 183():51-66. PubMed ID: 24667572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology.
    Merisko-Liversidge E; Liversidge GG
    Adv Drug Deliv Rev; 2011 May; 63(6):427-40. PubMed ID: 21223990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches.
    Salazar J; Ghanem A; Müller RH; Möschwitzer JP
    Eur J Pharm Biopharm; 2012 May; 81(1):82-90. PubMed ID: 22233547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products.
    Van Eerdenbrugh B; Van den Mooter G; Augustijns P
    Int J Pharm; 2008 Nov; 364(1):64-75. PubMed ID: 18721869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals.
    Martena V; Shegokar R; Di Martino P; Müller RH
    Drug Dev Ind Pharm; 2014 Sep; 40(9):1199-205. PubMed ID: 23815299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption.
    Ghosh I; Schenck D; Bose S; Ruegger C
    Eur J Pharm Sci; 2012 Nov; 47(4):718-28. PubMed ID: 22940548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of nanosuspensions as a tool to improve drug bioavailability: focus on topical delivery.
    Lai F; Schlich M; Pireddu R; Corrias F; Fadda AM; Sinico C
    Curr Pharm Des; 2015; 21(42):6089-103. PubMed ID: 26503149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug nanocrystals: four basic prerequisites for formulation development and scale-up.
    Srivalli KM; Mishra B
    Curr Drug Targets; 2015; 16(2):136-47. PubMed ID: 25410407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and isolation of pharmaceutical drug nanoparticles.
    Verma V; Ryan KM; Padrela L
    Int J Pharm; 2021 Jun; 603():120708. PubMed ID: 33992712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot-melt extrusion--basic principles and pharmaceutical applications.
    Lang B; McGinity JW; Williams RO
    Drug Dev Ind Pharm; 2014 Sep; 40(9):1133-55. PubMed ID: 24520867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding a relaxation behavior in a nanoparticle suspension for drug delivery applications.
    Deng Z; Xu S; Li S
    Int J Pharm; 2008 Mar; 351(1-2):236-43. PubMed ID: 18093763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid formulations by a nanocrystal approach: critical process parameters regarding scale-ability of nanocrystals for tableting applications.
    Tuomela A; Laaksonen T; Laru J; Antikainen O; Kiesvaara J; Ilkka J; Oksala O; Rönkkö S; Järvinen K; Hirvonen J; Peltonen L
    Int J Pharm; 2015 May; 485(1-2):77-86. PubMed ID: 25746735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies.
    Du J; Li X; Zhao H; Zhou Y; Wang L; Tian S; Wang Y
    Int J Pharm; 2015 Nov; 495(2):738-49. PubMed ID: 26383838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple low-cost miniaturization approach for pharmaceutical nanocrystals production.
    Romero GB; Keck CM; Müller RH
    Int J Pharm; 2016 Mar; 501(1-2):236-44. PubMed ID: 26642945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.