BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23000881)

  • 1. The specific expression pattern of globin mRNAs in Tibetan chicken during late embryonic stage under hypoxia.
    Liu C; Zhang LF; Li N
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Apr; 164(4):638-44. PubMed ID: 23000881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue.
    Li M; Zhao C
    Sci China C Life Sci; 2009 Mar; 52(3):284-95. PubMed ID: 19294354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of hypoxia on hatching performance in chickens with different genetic adaptation to high altitude.
    Zhang H; Wang XT; Chamba Y; Ling Y; Wu CX
    Poult Sci; 2008 Oct; 87(10):2112-6. PubMed ID: 18809874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient dissociation of oxygen from hemoglobin in Tibetan chicken embryos compared with lowland chicken embryos incubated in hypoxia.
    Liu C; Zhang LF; Song ML; Bao HG; Zhao CJ; Li N
    Poult Sci; 2009 Dec; 88(12):2689-94. PubMed ID: 19903969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxic adaptations of hemoglobin in Tibetan chick embryo: high oxygen-affinity mutation and selective expression.
    Gou X; Li N; Lian L; Yan D; Zhang H; Wei Z; Wu C
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jun; 147(2):147-55. PubMed ID: 17360214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude.
    Jia CL; He LJ; Li PC; Liu HY; Wei ZH
    Poult Sci; 2016 Jul; 95(7):1660-1665. PubMed ID: 26957629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression pattern of HIF1α mRNA in brain, heart and liver tissues of Tibet chicken embryos in hypoxia revealed with quantitative real-time PCR.
    Zhang LF; Lian LS; Zhao CJ; Li JY; Bao HG; Wu Ch
    Animal; 2007 Nov; 1(10):1467-71. PubMed ID: 22444919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide association analysis reveals novel loci for hypoxia adaptability in Tibetan chicken.
    Jiang SY; Xu HY; Shen ZN; Zhao CJ; Wu C
    Anim Genet; 2018 Aug; 49(4):337-339. PubMed ID: 29774577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory effects of circular RNA on hypoxia adaptation in chicken embryos.
    Chen X; Zhang Y; Zhang W; Nie R; Bao H; Zhang B; Zhang H
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37788641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of key HIF-1α target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos.
    Zhang Y; Zhang H; Zhang B; Ling Y; Zhang H
    Gene; 2020 Mar; 729():144321. PubMed ID: 31887331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics.
    Zhang Y; Gou W; Zhang Y; Zhang H; Wu C
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Sep; 31():100602. PubMed ID: 31212116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomics and transcriptomics of embryonic livers reveal hypoxia adaptation of Tibetan chickens.
    Xue M; Yu R; Yang L; Xie F; Fang M; Tang Q
    BMC Genomics; 2024 Feb; 25(1):131. PubMed ID: 38302894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Differential gene expression of hypoxia inducible factor-1alpha and hypoxic adaptation in chicken].
    Wang CF; Wu CX; Li N
    Yi Chuan; 2007 Jan; 29(1):75-80. PubMed ID: 17284428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective.
    Zhao X; Wu N; Zhu Q; Gaur U; Gu T; Li D
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3280-8. PubMed ID: 25693693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken.
    Li S; Li D; Zhao X; Wang Y; Yin H; Zhou L; Zhong C; Zhu Q
    PLoS One; 2017; 12(2):e0172211. PubMed ID: 28222154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia adaptation and hemoglobin mutation in Tibetan chick embryo.
    Gou X; Li N; Lian L; Yan D; Zhang H; Wu C
    Sci China C Life Sci; 2005 Dec; 48(6):616-23. PubMed ID: 16483141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.
    Zhang Q; Gou W; Wang X; Zhang Y; Ma J; Zhang H; Zhang Y; Zhang H
    Genome Biol Evol; 2016 Feb; 8(3):765-76. PubMed ID: 26907498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Candidate Genes for Hypoxia Adaptation of Tibet Chicken Embryos by Selection Signature Analyses and RNA Sequencing.
    Liu X; Wang X; Liu J; Wang X; Bao H
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32698384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Varied hypoxia adaptation patterns of embryonic brain at different development stages between Tibetan and Dwarf laying chickens.
    Tang Q; Yu R; Wang Y; Xie F; Zhang H; Wu C; Fang M
    BMC Genomics; 2023 Jun; 24(1):342. PubMed ID: 37344809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIF-1 regulates energy metabolism of the Tibetan chicken brain during embryo development under hypoxia.
    Tang Q; Xu Q; Ding C; Zhang H; Ling Y; Wu C; Fang M
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R704-R713. PubMed ID: 33596720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.