These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23001259)

  • 21. Discrete free-surface millifluidics for rapid capture and analysis of airborne molecules using surface-enhanced Raman spectroscopy.
    Piorek BD; Andreou C; Moskovits M; Meinhart CD
    Anal Chem; 2014 Jan; 86(2):1061-6. PubMed ID: 24393015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants.
    Bhandari D; Walworth MJ; Sepaniak MJ
    Appl Spectrosc; 2009 May; 63(5):571-8. PubMed ID: 19470216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform.
    Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK
    Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing.
    Abu Hatab NA; Oran JM; Sepaniak MJ
    ACS Nano; 2008 Feb; 2(2):377-85. PubMed ID: 19206640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives.
    Piorek BD; Lee SJ; Moskovits M; Meinhart CD
    Anal Chem; 2012 Nov; 84(22):9700-5. PubMed ID: 23067072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy.
    Lan L; Hou X; Gao Y; Fan X; Qiu T
    Nanotechnology; 2020 Jan; 31(5):055502. PubMed ID: 31627207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An optofluidic device for surface enhanced Raman spectroscopy.
    Wang M; Jing N; Chou IH; Cote GL; Kameoka J
    Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection and Quantitation of Trace Fentanyl in Heroin by Surface-Enhanced Raman Spectroscopy.
    Haddad A; Comanescu MA; Green O; Kubic TA; Lombardi JR
    Anal Chem; 2018 Nov; 90(21):12678-12685. PubMed ID: 30247896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lab-on-Chip, Surface-Enhanced Raman Analysis by Aerosol Jet Printing and Roll-to-Roll Hot Embossing.
    Habermehl A; Strobel N; Eckstein R; Bolse N; Mertens A; Hernandez-Sosa G; Eschenbaum C; Lemmer U
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29053610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast electrically assisted regeneration of on-chip SERS substrates.
    Meier TA; Poehler E; Kemper F; Pabst O; Jahnke HG; Beckert E; Robitzki A; Belder D
    Lab Chip; 2015 Jul; 15(14):2923-7. PubMed ID: 26040796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of Plasma-Printed Paper-Based SERS Substrate for Cocaine Detection.
    Alder R; Hong J; Chow E; Fang J; Isa F; Ashford B; Comte C; Bendavid A; Xiao L; Ostrikov KK; Fu S; Murphy AB
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing.
    Negri P; Jacobs KT; Dada OO; Schultz ZD
    Anal Chem; 2013 Nov; 85(21):10159-66. PubMed ID: 24074461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Additional amplifications of SERS via an optofluidic CD-based platform.
    Choi D; Kang T; Cho H; Choi Y; Lee LP
    Lab Chip; 2009 Jan; 9(2):239-43. PubMed ID: 19107279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate.
    Gutés A; Carraro C; Maboudian R
    J Am Chem Soc; 2010 Feb; 132(5):1476-7. PubMed ID: 20073460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.
    Lee S; Choi J; Chen L; Park B; Kyong JB; Seong GH; Choo J; Lee Y; Shin KH; Lee EK; Joo SW; Lee KH
    Anal Chim Acta; 2007 May; 590(2):139-44. PubMed ID: 17448337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple strategy to improve surface-enhanced Raman scattering based on electrochemically prepared roughened silver substrates.
    Yang KH; Liu YC; Yu CC
    Langmuir; 2010 Jul; 26(13):11512-7. PubMed ID: 20524629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging.
    Li M; Lu J; Qi J; Zhao F; Zeng J; Yu JC; Shih WC
    J Biomed Opt; 2014 May; 19(5):050501. PubMed ID: 24805805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new calibration concept for a reproducible quantitative detection based on SERS measurements in a microfluidic device demonstrated on the model analyte adenine.
    Kämmer E; Olschewski K; Bocklitz T; Rösch P; Weber K; Cialla D; Popp J
    Phys Chem Chem Phys; 2014 May; 16(19):9056-63. PubMed ID: 24695457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.