These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23001323)

  • 1. The description of protein internal motions aids selection of ligand binding poses by the INPHARMA method.
    Stauch B; Orts J; Carlomagno T
    J Biomol NMR; 2012 Nov; 54(3):245-56. PubMed ID: 23001323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.
    Liu Q; Shi C; Yu L; Zhang L; Xiong Y; Tian C
    Biochem Biophys Res Commun; 2015 Feb; 457(3):467-72. PubMed ID: 25600810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of Probing Protein-Ligand Interactions Using NMR.
    Aguirre C; Cala O; Krimm I
    Curr Protoc Protein Sci; 2015 Aug; 81():17.18.1-17.18.24. PubMed ID: 26237672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How much NMR data is required to determine a protein-ligand complex structure?
    Schieborr U; Vogtherr M; Elshorst B; Betz M; Grimme S; Pescatore B; Langer T; Saxena K; Schwalbe H
    Chembiochem; 2005 Oct; 6(10):1891-8. PubMed ID: 16013076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude.
    Orts J; Bartoschek S; Griesinger C; Monecke P; Carlomagno T
    J Biomol NMR; 2012 Jan; 52(1):23-30. PubMed ID: 22167466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of order parameters based on protein NMR structure ensemble and machine learning.
    Wang Q; Miao Z; Xiao X; Zhang X; Yang D; Jiang B; Liu M
    J Biomol NMR; 2024 Jun; 78(2):87-94. PubMed ID: 38530516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-the-Fly Integration of Data from a Spin-Diffusion-Based NMR Experiment into Protein-Ligand Docking.
    Onila I; ten Brink T; Fredriksson K; Codutti L; Mazur A; Griesinger C; Carlomagno T; Exner TE
    J Chem Inf Model; 2015 Sep; 55(9):1962-72. PubMed ID: 26226383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explicit models of motions to analyze NMR relaxation data in proteins.
    Bolik-Coulon N; Ferrage F
    J Chem Phys; 2022 Sep; 157(12):125102. PubMed ID: 36182415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Quantitative Validation of 3D Models of Low-Affinity Protein-Ligand Complexes by STD NMR Spectroscopy.
    Nepravishta R; Ramírez-Cárdenas J; Rocha G; Walpole S; Hicks T; Monaco S; Muñoz-García JC; Angulo J
    J Med Chem; 2024 Jun; 67(12):10025-10034. PubMed ID: 38848103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanodiscs for INPHARMA NMR Characterization of GPCRs: Ligand Binding to the Human A2A Adenosine Receptor.
    Fredriksson K; Lottmann P; Hinz S; Onila I; Shymanets A; Harteneck C; Müller CE; Griesinger C; Exner TE
    Angew Chem Int Ed Engl; 2017 May; 56(21):5750-5754. PubMed ID: 28429411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation and Selection of Dynamic Protein Structural Ensembles with CoNSEnsX
    Dudola D; Kovács B; Gáspári Z
    Methods Mol Biol; 2020; 2112():241-254. PubMed ID: 32006289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. INPHARMA-Based Determination of Ligand Binding Modes at α
    Vaid TM; Chalmers DK; Scott DJ; Gooley PR
    Chemistry; 2020 Sep; 26(51):11796-11805. PubMed ID: 32291801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does it really move? Recent progress in the investigation of protein nanosecond dynamics by NMR and simulation.
    Stenström O; Champion C; Lehner M; Bouvignies G; Riniker S; Ferrage F
    Curr Opin Struct Biol; 2022 Dec; 77():102459. PubMed ID: 36148743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics.
    Philippopoulos M; Mandel AM; Palmer AG; Lim C
    Proteins; 1997 Aug; 28(4):481-93. PubMed ID: 9261865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing protein dynamics by nuclear magnetic resonance.
    Sze KH; Lai PM
    Protein Pept Lett; 2011 Apr; 18(4):373-9. PubMed ID: 21222637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction.
    Lehtivarjo J; Tuppurainen K; Hassinen T; Laatikainen R; Peräkylä M
    J Biomol NMR; 2012 Mar; 52(3):257-67. PubMed ID: 22314705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.