BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23001515)

  • 21. Cramer-Rao lower bound optimization of an EM-CCD-based scintillation gamma camera.
    Korevaar MA; Goorden MC; Beekman FJ
    Phys Med Biol; 2013 Apr; 58(8):2641-55. PubMed ID: 23552717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of Cramer-Rao Lower Bound for Performance Evaluation of Different Monolithic Crystal PET Detector Designs.
    Li X; Hunter WC; Lewellen TK; Miyaoka RS
    IEEE Trans Nucl Sci; 2012; 59(1):3-12. PubMed ID: 22685349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.
    Cates JW; Levin CS
    Phys Med Biol; 2018 Jun; 63(11):115011. PubMed ID: 29762136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.
    Bläckberg L; El Fakhri G; Sabet H
    Phys Med Biol; 2017 Oct; 62(21):8419-8440. PubMed ID: 29047453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical simulation of monolithic scintillator detectors using GATE/GEANT4.
    van der Laan DJJ; Schaart DR; Maas MC; Beekman FJ; Bruyndonckx P; van Eijk CWE
    Phys Med Biol; 2010 Mar; 55(6):1659-75. PubMed ID: 20182005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Depth of interaction determination in monolithic scintillator with double side SiPM readout.
    Morrocchi M; Ambrosi G; Bisogni MG; Bosi F; Boretto M; Cerello P; Ionica M; Liu B; Pennazio F; Piliero MA; Pirrone G; Postolache V; Wheadon R; Del Guerra A
    EJNMMI Phys; 2017 Dec; 4(1):11. PubMed ID: 28211032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring TOF capabilities of PET detector blocks based on large monolithic crystals and analog SiPMs.
    Lamprou E; Gonzalez AJ; Sanchez F; Benlloch JM
    Phys Med; 2020 Feb; 70():10-18. PubMed ID: 31935602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monolithic LaBr₃:Ce crystals on silicon photomultiplier arrays for time-of-flight positron emission tomography.
    Seifert S; van Dam HT; Huizenga J; Vinke R; Dendooven P; Löhner H; Schaart DR
    Phys Med Biol; 2012 Apr; 57(8):2219-33. PubMed ID: 22455977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Timing evaluation of a PET detector block based on semi-monolithic LYSO crystals.
    Cucarella N; Barrio J; Lamprou E; Valladares C; Benlloch JM; Gonzalez AJ
    Med Phys; 2021 Dec; 48(12):8010-8023. PubMed ID: 34723380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maximum likelihood positioning and energy correction for scintillation detectors.
    Lerche CW; Salomon A; Goldschmidt B; Lodomez S; Weissler B; Solf T
    Phys Med Biol; 2016 Feb; 61(4):1650-76. PubMed ID: 26836394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A practical method for depth of interaction determination in monolithic scintillator PET detectors.
    van Dam HT; Seifert S; Vinke R; Dendooven P; Löhner H; Beekman FJ; Schaart DR
    Phys Med Biol; 2011 Jul; 56(13):4135-45. PubMed ID: 21693789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo simulation of scintillation photons for the design of a high-resolution SPECT detector dedicated to human brain.
    Hirano Y; Zeniya T; Iida H
    Ann Nucl Med; 2012 Apr; 26(3):214-21. PubMed ID: 22160738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitivity encoded silicon photomultiplier--a new sensor for high-resolution PET-MRI.
    Schulz V; Berker Y; Berneking A; Omidvari N; Kiessling F; Gola A; Piemonte C
    Phys Med Biol; 2013 Jul; 58(14):4733-48. PubMed ID: 23782507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-resolution monolithic LYSO detector with 6-layer depth-of-interaction for clinical PET.
    Stockhoff M; Decuyper M; Van Holen R; Vandenberghe S
    Phys Med Biol; 2021 Jul; 66(15):. PubMed ID: 34261049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physics and technology of time-of-flight PET detectors.
    Schaart DR
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33711831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A neural network-based algorithm for simultaneous event positioning and timestamping in monolithic scintillators.
    Carra P; Giuseppina Bisogni M; Ciarrocchi E; Morrocchi M; Sportelli G; Rosso V; Belcari N
    Phys Med Biol; 2022 Jun; 67(13):. PubMed ID: 35609583
    [No Abstract]   [Full Text] [Related]  

  • 37. Novel preclinical PET geometrical concept using a monolithic scintillator crystal offering concurrent enhancement in spatial resolution and detection sensitivity: a simulation study.
    Sanaat A; Arabi H; Reza Ay M; Zaidi H
    Phys Med Biol; 2020 Feb; 65(4):045013. PubMed ID: 31855857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of a convex time skew calibration for light sharing-based PET detectors.
    Naunheim S; Kuhl Y; Solf T; Schug D; Schulz V; Mueller F
    Phys Med Biol; 2023 Jan; 68(2):. PubMed ID: 36595338
    [No Abstract]   [Full Text] [Related]  

  • 39. Performance characterization of a new high resolution PET scintillation detector.
    Vandenbroucke A; Foudray AM; Olcott PD; Levin CS
    Phys Med Biol; 2010 Oct; 55(19):5895-911. PubMed ID: 20844332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Basic performance of a large area PET detector with a monolithic scintillator.
    Yoshida E; Inadama N; Osada H; Kawai H; Nishikido F; Murayama H; Tsuda T; Yamaya T
    Radiol Phys Technol; 2011 Jul; 4(2):134-9. PubMed ID: 21340540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.