BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 23001567)

  • 21. The von Hippel-Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1.
    Zhou MI; Wang H; Ross JJ; Kuzmin I; Xu C; Cohen HT
    J Biol Chem; 2002 Oct; 277(42):39887-98. PubMed ID: 12169691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polycystin-1 negatively regulates Polycystin-2 expression via the aggresome/autophagosome pathway.
    Cebotaru V; Cebotaru L; Kim H; Chiaravalli M; Boletta A; Qian F; Guggino WB
    J Biol Chem; 2014 Mar; 289(10):6404-6414. PubMed ID: 24459142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C.
    Okuda H; Saitoh K; Hirai S; Iwai K; Takaki Y; Baba M; Minato N; Ohno S; Shuin T
    J Biol Chem; 2001 Nov; 276(47):43611-7. PubMed ID: 11574546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polycystin-1 regulates bone development through an interaction with the transcriptional coactivator TAZ.
    Merrick D; Mistry K; Wu J; Gresko N; Baggs JE; Hogenesch JB; Sun Z; Caplan MJ
    Hum Mol Genet; 2019 Jan; 28(1):16-30. PubMed ID: 30215740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein.
    Corn PG; McDonald ER; Herman JG; El-Deiry WS
    Nat Genet; 2003 Nov; 35(3):229-37. PubMed ID: 14556007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Casein kinase 1 α phosphorylates the Wnt regulator Jade-1 and modulates its activity.
    Borgal L; Rinschen MM; Dafinger C; Hoff S; Reinert MJ; Lamkemeyer T; Lienkamp SS; Benzing T; Schermer B
    J Biol Chem; 2014 Sep; 289(38):26344-26356. PubMed ID: 25100726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steviol stabilizes polycystin 1 expression and promotes lysosomal degradation of CFTR and β-catenin proteins in renal epithelial cells.
    Yuajit C; Muanprasat C; Homvisasevongsa S; Chatsudthipong V
    Biomed Pharmacother; 2017 Oct; 94():820-826. PubMed ID: 28802235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beta-catenin gets jaded and von Hippel-Lindau is to blame.
    Berndt JD; Moon RT; Major MB
    Trends Biochem Sci; 2009 Mar; 34(3):101-4. PubMed ID: 19217300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polycystin-1 and Gα12 regulate the cleavage of E-cadherin in kidney epithelial cells.
    Xu JX; Lu TS; Li S; Wu Y; Ding L; Denker BM; Bonventre JV; Kong T
    Physiol Genomics; 2015 Feb; 47(2):24-32. PubMed ID: 25492927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ubiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel-Lindau tumor suppressor protein.
    Li Z; Na X; Wang D; Schoen SR; Messing EM; Wu G
    J Biol Chem; 2002 Feb; 277(7):4656-62. PubMed ID: 11739384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The von Hippel-Lindau tumour suppressor: a multi-faceted inhibitor of tumourigenesis.
    Barry RE; Krek W
    Trends Mol Med; 2004 Sep; 10(9):466-72. PubMed ID: 15350900
    [No Abstract]   [Full Text] [Related]  

  • 32. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway.
    Hartman TR; Liu D; Zilfou JT; Robb V; Morrison T; Watnick T; Henske EP
    Hum Mol Genet; 2009 Jan; 18(1):151-63. PubMed ID: 18845692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor α.
    Okumura F; Uematsu K; Byrne SD; Hirano M; Joo-Okumura A; Nishikimi A; Shuin T; Fukui Y; Nakatsukasa K; Kamura T
    Mol Cell Biol; 2016 Jun; 36(12):1803-17. PubMed ID: 27090638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypoxia upregulates von Hippel-Lindau tumor-suppressor protein through RhoA-dependent activity in renal cell carcinoma.
    Turcotte S; Desrosiers RR; Beliveau R
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F338-48. PubMed ID: 14583436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of novel VHL target genes and relationship to hypoxic response pathways.
    Maina EN; Morris MR; Zatyka M; Raval RR; Banks RE; Richards FM; Johnson CM; Maher ER
    Oncogene; 2005 Jun; 24(28):4549-58. PubMed ID: 15824735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renal cell carcinoma- and pheochromocytoma-specific altered gene expression profiles in VHL mutant clones.
    Tsuchiya MI; Okuda H; Takaki Y; Baba M; Hirai S; Ohno S; Shuin T
    Oncol Rep; 2005 Jun; 13(6):1033-41. PubMed ID: 15870918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease.
    Clifford SC; Cockman ME; Smallwood AC; Mole DR; Woodward ER; Maxwell PH; Ratcliffe PJ; Maher ER
    Hum Mol Genet; 2001 May; 10(10):1029-38. PubMed ID: 11331613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypoxia and cell cycle regulation of the von Hippel-Lindau tumor suppressor.
    Liu W; Xin H; Eckert DT; Brown JA; Gnarra JR
    Oncogene; 2011 Jan; 30(1):21-31. PubMed ID: 20802534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. von Hippel-Lindau protein promotes Skp2 destabilization on DNA damage.
    Roe JS; Kim HR; Hwang IY; Cho EJ; Youn HD
    Oncogene; 2011 Jul; 30(28):3127-38. PubMed ID: 21358672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.
    Maxwell PH; Wiesener MS; Chang GW; Clifford SC; Vaux EC; Cockman ME; Wykoff CC; Pugh CW; Maher ER; Ratcliffe PJ
    Nature; 1999 May; 399(6733):271-5. PubMed ID: 10353251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.