BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23001859)

  • 1. N-terminal protein processing: a comparative proteogenomic analysis.
    Bonissone S; Gupta N; Romine M; Bradshaw RA; Pevzner PA
    Mol Cell Proteomics; 2013 Jan; 12(1):14-28. PubMed ID: 23001859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-terminal methionine excision of proteins creates tertiary destabilizing N-degrons of the Arg/N-end rule pathway.
    Nguyen KT; Kim JM; Park SE; Hwang CS
    J Biol Chem; 2019 Mar; 294(12):4464-4476. PubMed ID: 30674553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14.
    Ouidir T; Jarnier F; Cosette P; Jouenne T; Hardouin J
    J Proteomics; 2015 Jan; 114():214-25. PubMed ID: 25464366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence determinants of cytosolic N-terminal protein processing.
    Flinta C; Persson B; Jörnvall H; von Heijne G
    Eur J Biochem; 1986 Jan; 154(1):193-6. PubMed ID: 3080313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases.
    Xiao Q; Zhang F; Nacev BA; Liu JO; Pei D
    Biochemistry; 2010 Jul; 49(26):5588-99. PubMed ID: 20521764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of the methionine aminopeptidase from porcine liver responsible for the co-translational processing of proteins.
    Kendall RL; Bradshaw RA
    J Biol Chem; 1992 Oct; 267(29):20667-73. PubMed ID: 1328207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey.
    Falb M; Aivaliotis M; Garcia-Rizo C; Bisle B; Tebbe A; Klein C; Konstantinidis K; Siedler F; Pfeiffer F; Oesterhelt D
    J Mol Biol; 2006 Oct; 362(5):915-24. PubMed ID: 16950390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteomics of N-terminal methionine cleavage.
    Frottin F; Martinez A; Peynot P; Mitra S; Holz RC; Giglione C; Meinnel T
    Mol Cell Proteomics; 2006 Dec; 5(12):2336-49. PubMed ID: 16963780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and analysis of the acetylated status of poplar proteins reveals analogous N-terminal protein processing mechanisms with other eukaryotes.
    Liu CC; Zhu HY; Dong XM; Ning DL; Wang HX; Li WH; Yang CP; Wang BC
    PLoS One; 2013; 8(3):e58681. PubMed ID: 23536812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation.
    Moerschell RP; Hosokawa Y; Tsunasawa S; Sherman F
    J Biol Chem; 1990 Nov; 265(32):19638-43. PubMed ID: 2174047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase.
    Van Damme P; Evjenth R; Foyn H; Demeyer K; De Bock PJ; Lillehaug JR; Vandekerckhove J; Arnesen T; Gevaert K
    Mol Cell Proteomics; 2011 May; 10(5):M110.004580. PubMed ID: 21383206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid sequence of a ferredoxin from thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Presence of an N6-monomethyllysine and phyletic consideration of archaebacteria.
    Minami Y; Wakabayashi S; Wada K; Matsubara H; Kerscher L; Oesterhelt D
    J Biochem; 1985 Mar; 97(3):745-53. PubMed ID: 3926756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans.
    Arnesen T; Van Damme P; Polevoda B; Helsens K; Evjenth R; Colaert N; Varhaug JE; Vandekerckhove J; Lillehaug JR; Sherman F; Gevaert K
    Proc Natl Acad Sci U S A; 2009 May; 106(20):8157-62. PubMed ID: 19420222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino-terminal extension present in the methionine aminopeptidase type 1c of Mycobacterium tuberculosis is indispensible for its activity.
    Kanudia P; Mittal M; Kumaran S; Chakraborti PK
    BMC Biochem; 2011 Jul; 12():35. PubMed ID: 21729287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amino acid sequence of human chorionic gonadotropin. The alpha subunit and beta subunit.
    Morgan FJ; Birken S; Canfield RE
    J Biol Chem; 1975 Jul; 250(13):5247-58. PubMed ID: 1150658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid residue penultimate to the amino-terminal gly residue strongly affects two cotranslational protein modifications, N-myristoylation and N-acetylation.
    Utsumi T; Sato M; Nakano K; Takemura D; Iwata H; Ishisaka R
    J Biol Chem; 2001 Mar; 276(13):10505-13. PubMed ID: 11124252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein.
    Uehara H; Ewenstein BM; Martinko JM; Nathenson SG; Coligan JE; Kindt TJ
    Biochemistry; 1980 Jan; 19(2):306-15. PubMed ID: 6986168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary and tertiary structure of the principal human adenylate kinase.
    Von Zabern I; Wittmann-Liebold B; Untucht-Grau R; Schirmer RH; Pai EF
    Eur J Biochem; 1976 Sep; 68(1):281-90. PubMed ID: 183954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete amino acid sequence of copper-zinc superoxide dismutase from Drosophila melanogaster.
    Lee YM; Friedman DJ; Ayala FJ
    Arch Biochem Biophys; 1985 Sep; 241(2):577-89. PubMed ID: 3929689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.