These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes. Kim SJ; Nian C; McIntosh CH J Biol Chem; 2007 Nov; 282(47):34139-47. PubMed ID: 17890220 [TBL] [Abstract][Full Text] [Related]
3. Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade. Kim SJ; Nian C; McIntosh CH J Biol Chem; 2007 Mar; 282(12):8557-67. PubMed ID: 17244606 [TBL] [Abstract][Full Text] [Related]
4. Glucose-dependent insulinotropic peptide impairs insulin signaling via inducing adipocyte inflammation in glucose-dependent insulinotropic peptide receptor-overexpressing adipocytes. Nie Y; Ma RC; Chan JC; Xu H; Xu G FASEB J; 2012 Jun; 26(6):2383-93. PubMed ID: 22366643 [TBL] [Abstract][Full Text] [Related]
5. GIP increases human adipocyte LPL expression through CREB and TORC2-mediated trans-activation of the LPL gene. Kim SJ; Nian C; McIntosh CH J Lipid Res; 2010 Nov; 51(11):3145-57. PubMed ID: 20693566 [TBL] [Abstract][Full Text] [Related]
6. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Song DH; Getty-Kaushik L; Tseng E; Simon J; Corkey BE; Wolfe MM Gastroenterology; 2007 Dec; 133(6):1796-805. PubMed ID: 18054552 [TBL] [Abstract][Full Text] [Related]
7. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. Kim SJ; Winter K; Nian C; Tsuneoka M; Koda Y; McIntosh CH J Biol Chem; 2005 Jun; 280(23):22297-307. PubMed ID: 15817464 [TBL] [Abstract][Full Text] [Related]
8. Disruption of GIP/GIPR axis in human adipose tissue is linked to obesity and insulin resistance. Ceperuelo-Mallafré V; Duran X; Pachón G; Roche K; Garrido-Sánchez L; Vilarrasa N; Tinahones FJ; Vicente V; Pujol J; Vendrell J; Fernández-Veledo S J Clin Endocrinol Metab; 2014 May; 99(5):E908-19. PubMed ID: 24512489 [TBL] [Abstract][Full Text] [Related]
9. Human epicardial adipose tissue expresses glucose-dependent insulinotropic polypeptide, glucagon, and glucagon-like peptide-1 receptors as potential targets of pleiotropic therapies. Malavazos AE; Iacobellis G; Dozio E; Basilico S; Di Vincenzo A; Dubini C; Menicanti L; Vianello E; Meregalli C; Ruocco C; Ragni M; Secchi F; Spagnolo P; Castelvecchio S; Morricone L; Buscemi S; Giordano A; Goldberger JJ; Carruba M; Cinti S; Corsi Romanelli MM; Nisoli E Eur J Prev Cardiol; 2023 Jun; 30(8):680-693. PubMed ID: 36799940 [TBL] [Abstract][Full Text] [Related]
10. Adipocyte expression of the glucose-dependent insulinotropic polypeptide receptor involves gene regulation by PPARγ and histone acetylation. Kim SJ; Nian C; McIntosh CH J Lipid Res; 2011 Apr; 52(4):759-70. PubMed ID: 21245029 [TBL] [Abstract][Full Text] [Related]
11. A naturally occurring GIP receptor variant undergoes enhanced agonist-induced desensitization, which impairs GIP control of adipose insulin sensitivity. Mohammad S; Patel RT; Bruno J; Panhwar MS; Wen J; McGraw TE Mol Cell Biol; 2014 Oct; 34(19):3618-29. PubMed ID: 25047836 [TBL] [Abstract][Full Text] [Related]
12. Functional expression of glucose-dependent insulinotropic polypeptide receptors is coupled to differentiation in a human adipocyte model. Weaver RE; Donnelly D; Wabitsch M; Grant PJ; Balmforth AJ Int J Obes (Lond); 2008 Nov; 32(11):1705-11. PubMed ID: 18779825 [TBL] [Abstract][Full Text] [Related]
13. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice. Chen S; Okahara F; Osaki N; Shimotoyodome A Am J Physiol Endocrinol Metab; 2015 Mar; 308(5):E414-25. PubMed ID: 25537494 [TBL] [Abstract][Full Text] [Related]
16. Glucose-Dependent Insulinotropic Polypeptide Suppresses Peripheral Arterial Remodeling in Male Mice. Mori Y; Kushima H; Koshibu M; Saito T; Hiromura M; Kohashi K; Terasaki M; Seino Y; Yamada Y; Hirano T Endocrinology; 2018 Jul; 159(7):2717-2732. PubMed ID: 29846588 [TBL] [Abstract][Full Text] [Related]
17. Tirzepatide modulates the regulation of adipocyte nutrient metabolism through long-acting activation of the GIP receptor. Regmi A; Aihara E; Christe ME; Varga G; Beyer TP; Ruan X; Beebe E; O'Farrell LS; Bellinger MA; Austin AK; Lin Y; Hu H; Konkol DL; Wojnicki S; Holland AK; Friedrich JL; Brown RA; Estelle AS; Badger HS; Gaidosh GS; Kooijman S; Rensen PCN; Coskun T; Thomas MK; Roell W Cell Metab; 2024 Jul; 36(7):1534-1549.e7. PubMed ID: 38878772 [TBL] [Abstract][Full Text] [Related]
18. Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR): cellular localization, lesion-affected expression, and impaired regenerative axonal growth. Buhren BA; Gasis M; Thorens B; Müller HW; Bosse F J Neurosci Res; 2009 Jun; 87(8):1858-70. PubMed ID: 19170165 [TBL] [Abstract][Full Text] [Related]
19. Individual and combined effects of GIP and xenin on differentiation, glucose uptake and lipolysis in 3T3-L1 adipocytes. English A; Craig SL; Flatt PR; Irwin N Biol Chem; 2020 Oct; 401(11):1293-1303. PubMed ID: 32769216 [TBL] [Abstract][Full Text] [Related]