These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23003009)

  • 1. Separation of bioactive peptides by membrane processes: technologies and devices.
    Bazinet L; Firdaous L
    Recent Pat Biotechnol; 2013 Apr; 7(1):9-27. PubMed ID: 23003009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane processes and devices for separation of bioactive peptides.
    Bazinet L; Firdaous L
    Recent Pat Biotechnol; 2009; 3(1):61-72. PubMed ID: 19149724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of Biologically Active Compounds by Membrane Operations.
    Zhu X; Bai R
    Curr Pharm Des; 2017; 23(2):218-230. PubMed ID: 27799041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-based techniques for the separation and purification of proteins: an overview.
    Saxena A; Tripathi BP; Kumar M; Shahi VK
    Adv Colloid Interface Sci; 2009 Jan; 145(1-2):1-22. PubMed ID: 18774120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane.
    Poulin JF; Amiot J; Bazinet L
    J Biotechnol; 2006 May; 123(3):314-28. PubMed ID: 16412527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane separations in biotechnology.
    van Reis R; Zydney A
    Curr Opin Biotechnol; 2001 Apr; 12(2):208-11. PubMed ID: 11287239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of ultrafiltration membrane material on Peptide separation from a snow crab byproduct hydrolysate by electrodialysis with ultrafiltration membranes.
    Doyen A; Beaulieu L; Saucier L; Pouliot Y; Bazinet L
    J Agric Food Chem; 2011 Mar; 59(5):1784-92. PubMed ID: 21254777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes.
    Doyen A; Udenigwe CC; Mitchell PL; Marette A; Aluko RE; Bazinet L
    Food Chem; 2014 Feb; 145():66-76. PubMed ID: 24128450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodialysis with porous membrane for bioproduct separation: Technology, features, and progress.
    Sun L; Chen Q; Lu H; Wang J; Zhao J; Li P
    Food Res Int; 2020 Nov; 137():109343. PubMed ID: 33233052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in membrane-based separations in biotechnology processes: review.
    Rathore AS; Shirke A
    Prep Biochem Biotechnol; 2011; 41(4):398-421. PubMed ID: 21967339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective separation of peptides contained in a rapeseed (Brassica campestris L.) protein hydrolysate using UF/NF membranes.
    Tessier B; Harscoat-Schiavo C; Marc I
    J Agric Food Chem; 2006 May; 54(10):3578-84. PubMed ID: 19127728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-membrane filtration for the selective isolation of bioactive peptides from an alpha(s2)-casein hydrolysate.
    Bargeman G; Houwing J; Recio I; Koops GH; van der Horst C
    Biotechnol Bioeng; 2002 Dec; 80(6):599-609. PubMed ID: 12378601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of feed solution flow rate on Peptide fractionation by electrodialysis with ultrafiltration membrane.
    Poulin JF; Amiot J; Bazinet L
    J Agric Food Chem; 2008 Mar; 56(6):2007-11. PubMed ID: 18281941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidants, mechanisms, and recovery by membrane processes.
    Bazinet L; Doyen A
    Crit Rev Food Sci Nutr; 2017 Mar; 57(4):677-700. PubMed ID: 25674704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in solvent-resistant nanofiltration membranes: experimental observations and applications.
    Bhanushali D; Bhattacharyya D
    Ann N Y Acad Sci; 2003 Mar; 984():159-77. PubMed ID: 12783816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Charge and Triple Size-Selective Membrane Separation of Peptides from Salmon Protein Hydrolysate Orientate their Biological Response on Glucose Uptake.
    Henaux L; Thibodeau J; Pilon G; Gill T; Marette A; Bazinet L
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31009989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in membrane technologies for biorefining and bioenergy production.
    He Y; Bagley DM; Leung KT; Liss SN; Liao BQ
    Biotechnol Adv; 2012; 30(4):817-58. PubMed ID: 22306168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-informed separation of bioactive peptides.
    Acquah C; Chan YW; Pan S; Agyei D; Udenigwe CC
    J Food Biochem; 2019 Jan; 43(1):e12765. PubMed ID: 31353493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of Anthocyanins Using Membrane Technologies: A Review.
    Martín J; Díaz-Montaña EJ; Asuero AG
    Crit Rev Anal Chem; 2018 May; 48(3):143-175. PubMed ID: 29185791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of an electrodialytic reactor for the simultaneous β-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides.
    Doyen A; Husson E; Bazinet L
    Food Chem; 2013 Feb; 136(3-4):1193-202. PubMed ID: 23194514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.