These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23003020)

  • 41. Upper critical dimension of the Kardar-Parisi-Zhang equation.
    Schwartz M; Perlsman E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):050103. PubMed ID: 23004690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Equation-free dynamic renormalization of a Kardar-Parisi-Zhang-type equation.
    Kessler DA; Kevrekidis IG; Chen L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036703. PubMed ID: 16605694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation: Starting from a parabola.
    Kamenev A; Meerson B; Sasorov PV
    Phys Rev E; 2016 Sep; 94(3-1):032108. PubMed ID: 27739726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transition from Kardar-Parisi-Zhang to tilted interface critical behavior in a solvable asymmetric avalanche model.
    Povolotsky AM; Priezzhev VB; Hu CK
    Phys Rev Lett; 2003 Dec; 91(25):255701. PubMed ID: 14754126
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kardar-Parisi-Zhang equation in a half space with flat initial condition and the unbinding of a directed polymer from an attractive wall.
    Barraquand G; Le Doussal P
    Phys Rev E; 2021 Aug; 104(2-1):024502. PubMed ID: 34525573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crossover from the macroscopic fluctuation theory to the Kardar-Parisi-Zhang equation controls the large deviations beyond Einstein's diffusion.
    Krajenbrink A; Le Doussal P
    Phys Rev E; 2023 Jan; 107(1-1):014137. PubMed ID: 36797871
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time Between the Maximum and the Minimum of a Stochastic Process.
    Mori F; Majumdar SN; Schehr G
    Phys Rev Lett; 2019 Nov; 123(20):200201. PubMed ID: 31809107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exact short-time height distribution and dynamical phase transition in the relaxation of a Kardar-Parisi-Zhang interface with random initial condition.
    Smith NR
    Phys Rev E; 2022 Oct; 106(4-1):044111. PubMed ID: 36397488
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Skewness in (1+1)-dimensional Kardar-Parisi-Zhang-type growth.
    Singha T; Nandy MK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062402. PubMed ID: 25615107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation.
    Colaiori F; Moore MA
    Phys Rev Lett; 2001 Apr; 86(18):3946-9. PubMed ID: 11328067
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonlocal Kardar-Parisi-Zhang equation to model interface growth.
    Kechagia P; Yortsos YC; Lichtner P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016315. PubMed ID: 11461399
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Symplectic Geometry Aspects of the Parametrically-Dependent Kardar-Parisi-Zhang Equation of Spin Glasses Theory, Its Integrability and Related Thermodynamic Stability.
    Prykarpatski AK; Pukach PY; Vovk MI
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832674
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generalized discretization of the Kardar-Parisi-Zhang equation.
    Buceta RC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):017701. PubMed ID: 16090153
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scaling of clusters and winding-angle statistics of isoheight lines in two-dimensional Kardar-Parisi-Zhang surfaces.
    Saberi AA; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036102. PubMed ID: 19392013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hierarchic trees with branching number close to one: Noiseless Kardar-Parisi-Zhang equation with additional linear term for imitating two-dimensional and three-dimensional phase transitions.
    Saakian DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):067104. PubMed ID: 12188870
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-consistent expansion for the Kardar-Parisi-Zhang equation with correlated noise.
    Katzav E; Schwartz M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5677-80. PubMed ID: 11970461
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-consistent expansion results for the nonlocal Kardar-Parisi-Zhang equation.
    Katzav E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046113. PubMed ID: 14683008
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Width distributions and the upper critical dimension of Kardar-Parisi-Zhang interfaces.
    Marinari E; Pagnani A; Parisi G; Rácz Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026136. PubMed ID: 11863616
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer.
    Santalla SN; Rodríguez-Laguna J; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010401. PubMed ID: 24580156
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Localized growth modes, dynamic textures, and upper critical dimension for the Kardar-Parisi-Zhang equation in the weak-noise limit.
    Fogedby HC
    Phys Rev Lett; 2005 May; 94(19):195702. PubMed ID: 16090188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.