These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 23003076)
1. Impact of small-angle scattering on ballistic transport in quantum dots. See AM; Pilgrim I; Scannell BC; Montgomery RD; Klochan O; Burke AM; Aagesen M; Lindelof PE; Farrer I; Ritchie DA; Taylor RP; Hamilton AR; Micolich AP Phys Rev Lett; 2012 May; 108(19):196807. PubMed ID: 23003076 [TBL] [Abstract][Full Text] [Related]
2. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes. Gabor NM Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453 [TBL] [Abstract][Full Text] [Related]
3. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots. Weiss EA Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589 [TBL] [Abstract][Full Text] [Related]
5. Transport through graphene quantum dots. Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122 [TBL] [Abstract][Full Text] [Related]
6. Electron counting spectroscopy of CdSe quantum dots. Zdrojek M; Esplandiu MJ; Barreiro A; Bachtold A Phys Rev Lett; 2009 Jun; 102(22):226804. PubMed ID: 19658888 [TBL] [Abstract][Full Text] [Related]
7. Fabry - Perot interference in a nanotube electron waveguide. Liang W; Bockrath M; Bozovic D; Hafner JH; Tinkham M; Park H Nature; 2001 Jun; 411(6838):665-9. PubMed ID: 11395762 [TBL] [Abstract][Full Text] [Related]
8. Long-range transport in an assembly of ZnO quantum dots: the effects of quantum confinement, Coulomb repulsion and structural disorder. Roest AL; Germeau A; Kelly JJ; Vanmaekelbergh D; Allan G; Meulenkamp EA Chemphyschem; 2003 Sep; 4(9):959-66. PubMed ID: 14562441 [TBL] [Abstract][Full Text] [Related]
12. Phase-coherent transport in graphene quantum billiards. Miao F; Wijeratne S; Zhang Y; Coskun UC; Bao W; Lau CN Science; 2007 Sep; 317(5844):1530-3. PubMed ID: 17872440 [TBL] [Abstract][Full Text] [Related]
13. Hot electron injection from graphene quantum dots to TiO₂. Williams KJ; Nelson CA; Yan X; Li LS; Zhu X ACS Nano; 2013 Feb; 7(2):1388-94. PubMed ID: 23347000 [TBL] [Abstract][Full Text] [Related]
14. Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions. Bock C; Weingart S; Karaissaridis E; Kunze U; Speck F; Seyller T Nanotechnology; 2012 Oct; 23(39):395203. PubMed ID: 22971877 [TBL] [Abstract][Full Text] [Related]
15. Spin accumulation and spin relaxation in a large open quantum dot. Koop EJ; van Wees BJ; Reuter D; Wieck AD; van der Wal CH Phys Rev Lett; 2008 Aug; 101(5):056602. PubMed ID: 18764414 [TBL] [Abstract][Full Text] [Related]
16. Directed electron transport through a ballistic quantum dot under microwave radiation. Zhang JQ; Vitkalov S; Kvon ZD; Portal JC; Wieck A Phys Rev Lett; 2006 Dec; 97(22):226807. PubMed ID: 17155830 [TBL] [Abstract][Full Text] [Related]
17. The influence of ionized impurity scattering on the thermopower of Si nanowires. Oh JH; Jang MG; Shin M J Phys Condens Matter; 2013 Dec; 25(50):505301. PubMed ID: 24219975 [TBL] [Abstract][Full Text] [Related]
18. Energy-filtered cold electron transport at room temperature. Bhadrachalam P; Subramanian R; Ray V; Ma LC; Wang W; Kim J; Cho K; Koh SJ Nat Commun; 2014 Sep; 5():4745. PubMed ID: 25204839 [TBL] [Abstract][Full Text] [Related]
19. Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations. Usman M; Tan YH; Ryu H; Ahmed SS; Krenner HJ; Boykin TB; Klimeck G Nanotechnology; 2011 Aug; 22(31):315709. PubMed ID: 21737873 [TBL] [Abstract][Full Text] [Related]