These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23003076)

  • 21. Partitioning of on-demand electron pairs.
    Ubbelohde N; Hohls F; Kashcheyevs V; Wagner T; Fricke L; Kästner B; Pierz K; Schumacher HW; Haug RJ
    Nat Nanotechnol; 2015 Jan; 10(1):46-9. PubMed ID: 25437747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum dots as chemical building blocks: elementary theoretical considerations.
    Remacle F; Levine RD
    Chemphyschem; 2001 Jan; 2(1):20-36. PubMed ID: 23696378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unraveling the structure and dynamics of excitons in semiconductor quantum dots.
    Kambhampati P
    Acc Chem Res; 2011 Jan; 44(1):1-13. PubMed ID: 20942416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crossover from 'mesoscopic' to 'universal' phase for electron transmission in quantum dots.
    Avinun-Kalish M; Heiblum M; Zarchin O; Mahalu D; Umansky V
    Nature; 2005 Jul; 436(7050):529-33. PubMed ID: 16049482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Triple quantum dots as charge rectifiers.
    Busl M; Platero G
    J Phys Condens Matter; 2012 Apr; 24(15):154001. PubMed ID: 22442135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-temperature luminescence quenching of colloidal quantum dots.
    Zhao Y; Riemersma C; Pietra F; Koole R; Donegá Cde M; Meijerink A
    ACS Nano; 2012 Oct; 6(10):9058-67. PubMed ID: 22978378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proposed quenching of phonon-induced processes in photoexcited quantum dots due to electron-hole asymmetries.
    Nysteen A; Kaer P; Mork J
    Phys Rev Lett; 2013 Feb; 110(8):087401. PubMed ID: 23473200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling the sign of magnetoconductance in Andreev quantum dots.
    Whitney RS; Jacquod P
    Phys Rev Lett; 2009 Dec; 103(24):247002. PubMed ID: 20366223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Half-integer filling-factor states in quantum dots.
    Harju A; Saarikoski H; Räsänen E
    Phys Rev Lett; 2006 Mar; 96(12):126805. PubMed ID: 16605942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of single electron transport via multiple quantum states of a silicon quantum dot at room temperature.
    Lee S; Lee Y; Song EB; Hiramoto T
    Nano Lett; 2014 Jan; 14(1):71-7. PubMed ID: 24289317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature-sensitive photoluminescence of CdSe quantum dot clusters.
    Biju V; Makita Y; Sonoda A; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Jul; 109(29):13899-905. PubMed ID: 16852744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth of Bi2Te3 quantum dots/rods in glass: a unique highly stable nanosystem with novel functionality for high performance magneto optical devices.
    Panmand RP; Kumar G; Mahajan SM; Shroff N; Kale BB; Gosavi SW
    Phys Chem Chem Phys; 2012 Dec; 14(47):16236-42. PubMed ID: 23111316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chaotic scattering, unstable periodic orbits, and fluctuations in quantum transport.
    Jensen RV
    Chaos; 1991 Jul; 1(1):101-109. PubMed ID: 12779901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E; Keuleyan S; Guyot-Sionnest P
    Nanotechnology; 2012 May; 23(17):175705. PubMed ID: 22481378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A possible solution for charge sensing in vertical double quantum dots.
    Huang SM; Badrutdinov AO; Kono K; Ono K
    J Phys Condens Matter; 2013 Aug; 25(34):345301. PubMed ID: 23883871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regular conductance fluctuations indicative of quasi-ballistic transport in bilayer graphene.
    Ujiie Y; Motooka S; Morimoto T; Aoki N; Ferry DK; Bird JP; Ochiai Y
    J Phys Condens Matter; 2009 Sep; 21(38):382202. PubMed ID: 21832362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optically programmable electron spin memory using semiconductor quantum dots.
    Kroutvar M; Ducommun Y; Heiss D; Bichler M; Schuh D; Abstreiter G; Finley JJ
    Nature; 2004 Nov; 432(7013):81-4. PubMed ID: 15525984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybridization of electronic states in quantum dots through photon emission.
    Karrai K; Warburton RJ; Schulhauser C; Högele A; Urbaszek B; McGhee EJ; Govorov AO; Garcia JM; Gerardot BD; Petroff PM
    Nature; 2004 Jan; 427(6970):135-8. PubMed ID: 14712271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of quantum dot microarrays using electron beam lithography for applications in analyte sensing and cellular dynamics.
    Palankar R; Medvedev N; Rong A; Delcea M
    ACS Nano; 2013 May; 7(5):4617-28. PubMed ID: 23597071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability.
    Tang J; Brzozowski L; Barkhouse DA; Wang X; Debnath R; Wolowiec R; Palmiano E; Levina L; Pattantyus-Abraham AG; Jamakosmanovic D; Sargent EH
    ACS Nano; 2010 Feb; 4(2):869-78. PubMed ID: 20104859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.