These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23003076)

  • 41. Wave transport and statistical properties of an open non-Hermitian quantum dot with parity-time symmetry.
    Wahlstrand B; Yakimenko II; Berggren KF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062910. PubMed ID: 25019854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Joint mapping of mobility and trap density in colloidal quantum dot solids.
    Stadler P; Sutherland BR; Ren Y; Ning Z; Simchi A; Thon SM; Hoogland S; Sargent EH
    ACS Nano; 2013 Jul; 7(7):5757-62. PubMed ID: 23786265
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Collective cloaking of a cluster of electrostatically defined core-shell quantum dots in graphene.
    Sadrara M; Miri M
    J Phys Condens Matter; 2022 Jan; 34(11):. PubMed ID: 34920446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots.
    Zhu H; Prakash A; Benoit DN; Jones CJ; Colvin VL
    Nanotechnology; 2010 Jun; 21(25):255604. PubMed ID: 20516578
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Direct imaging of electron states in open quantum dots.
    Aoki N; Brunner R; Burke AM; Akis R; Meisels R; Ferry DK; Ochiai Y
    Phys Rev Lett; 2012 Mar; 108(13):136804. PubMed ID: 22540721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disorder effect on the transport properties of graphene quantum well structures.
    Xu GJ; Wu BH; Xu XG; Cao JC
    J Phys Condens Matter; 2010 Nov; 22(43):435301. PubMed ID: 21403324
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physics of lateral triple quantum-dot molecules with controlled electron numbers.
    Hsieh CY; Shim YP; Korkusinski M; Hawrylak P
    Rep Prog Phys; 2012 Nov; 75(11):114501. PubMed ID: 23072742
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.
    Kushwaha MS
    J Chem Phys; 2011 Sep; 135(12):124704. PubMed ID: 21974549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple functionality in nanotube transistors.
    Léonard F; Tersoff J
    Phys Rev Lett; 2002 Jun; 88(25 Pt 1):258302. PubMed ID: 12097134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Room temperature ballistic transport in InSb quantum well nanodevices.
    Gilbertson AM; Kormányos A; Buckle PD; Fearn M; Ashley T; Lambert CJ; Solin SA; Cohen LF
    Appl Phys Lett; 2011 Dec; 99(24):242101-2421013. PubMed ID: 22275771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electronic refrigeration of a two-dimensional electron gas.
    Prance JR; Smith CG; Griffiths JP; Chorley SJ; Anderson D; Jones GA; Farrer I; Ritchie DA
    Phys Rev Lett; 2009 Apr; 102(14):146602. PubMed ID: 19392464
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantum transport in a chain of quantum dots with inhomogeneous size distribution and manifestation of 1D Anderson localization.
    Cha MH; Hwang J
    Sci Rep; 2020 Oct; 10(1):16701. PubMed ID: 33028853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase-sensitive noise in quantum dots under periodic perturbation.
    Lamacraft A
    Phys Rev Lett; 2003 Jul; 91(3):036804. PubMed ID: 12906437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scattering phase of quantum dots: emergence of universal behavior.
    Molina RA; Jalabert RA; Weinmann D; Jacquod P
    Phys Rev Lett; 2012 Feb; 108(7):076803. PubMed ID: 22401237
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Observation of Strong Reflection of Electron Waves Exiting a Ballistic Channel at Low Energy.
    Vaz CI; Liu C; Campbell JP; Ryan JT; Southwick RG; Gundlach D; Oates AS; Huang R; Cheung KP
    AIP Adv; 2016 Jun; 6(6):. PubMed ID: 27882264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction correction to the conductance of a ballistic conductor.
    Brouwer PW; Kupferschmidt JN
    Phys Rev Lett; 2008 Jun; 100(24):246805. PubMed ID: 18643611
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of shape on electron transport in ballistic quantum dots.
    Berry MJ; Katine JA; Westervelt RM; Gossard AC
    Phys Rev B Condens Matter; 1994 Dec; 50(23):17721-17724. PubMed ID: 9976200
    [No Abstract]   [Full Text] [Related]  

  • 59. Practical characterization of quantum devices without tomography.
    da Silva MP; Landon-Cardinal O; Poulin D
    Phys Rev Lett; 2011 Nov; 107(21):210404. PubMed ID: 22181862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase breaking in ballistic quantum dots: Experiment and analysis based on chaotic scattering.
    Marcus CM; Westervelt RM; Hopkins PF; Gossard AC
    Phys Rev B Condens Matter; 1993 Jul; 48(4):2460-2464. PubMed ID: 10008638
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.