These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 23003168)
1. Statistics of reflection eigenvalues in chaotic cavities with nonideal leads. Vidal P; Kanzieper E Phys Rev Lett; 2012 May; 108(20):206806. PubMed ID: 23003168 [TBL] [Abstract][Full Text] [Related]
2. Distribution of reflection eigenvalues in many-channel chaotic cavities with absorption. Savin DV; Sommers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):035201. PubMed ID: 15089349 [TBL] [Abstract][Full Text] [Related]
3. Electronic transport through ballistic chaotic cavities: reflection symmetry, direct processes, and symmetry breaking. Martínez M; Mello PA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016205. PubMed ID: 11304333 [TBL] [Abstract][Full Text] [Related]
4. Delay times and reflection in chaotic cavities with absorption. Savin DV; Sommers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036211. PubMed ID: 14524872 [TBL] [Abstract][Full Text] [Related]
5. Statistics of quantum transport in weakly nonideal chaotic cavities. Rodríguez-Pérez S; Marino R; Novaes M; Vivo P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052912. PubMed ID: 24329336 [TBL] [Abstract][Full Text] [Related]
6. Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems. Hemmady S; Zheng X; Hart J; Antonsen TM; Ott E; Anlage SM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036213. PubMed ID: 17025735 [TBL] [Abstract][Full Text] [Related]
7. Electronic transport in chaotic mesoscopic cavities: A Kwant and random matrix theory based exploration. Chandramouli RS; Srivastav RK; Kumar S Chaos; 2020 Dec; 30(12):123120. PubMed ID: 33380063 [TBL] [Abstract][Full Text] [Related]
8. Semiclassical theory of chaotic conductors. Heusler S; Müller S; Braun P; Haake F Phys Rev Lett; 2006 Feb; 96(6):066804. PubMed ID: 16606030 [TBL] [Abstract][Full Text] [Related]
9. Effect of spatial reflection symmetry on the distribution of the parametric conductance derivative in ballistic chaotic cavities. Martínez-Mares M; Castaño E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036201. PubMed ID: 15903540 [TBL] [Abstract][Full Text] [Related]
10. Universal transport properties of open microwave cavities with and without time-reversal symmetry. Schanze H; Stöckmann HJ; Martínez-Mares M; Lewenkopf CH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016223. PubMed ID: 15697714 [TBL] [Abstract][Full Text] [Related]
11. Integrable theory of quantum transport in chaotic cavities. Osipov VA; Kanzieper E Phys Rev Lett; 2008 Oct; 101(17):176804. PubMed ID: 18999772 [TBL] [Abstract][Full Text] [Related]
12. Conductance fluctuations and quantum chaotic scattering in semiconductor microstructures. Marcus CM; Westervelt RM; Hopkins PF; Gossard AC Chaos; 1993 Oct; 3(4):643-653. PubMed ID: 12780069 [TBL] [Abstract][Full Text] [Related]
13. Statistical fluctuations of the parametric derivative of the transmission and reflection coefficients in absorbing chaotic cavities. Martínez-Mares M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036202. PubMed ID: 16241543 [TBL] [Abstract][Full Text] [Related]
14. Universality in chaotic quantum transport: the concordance between random-matrix and semiclassical theories. Berkolaiko G; Kuipers J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):045201. PubMed ID: 22680530 [TBL] [Abstract][Full Text] [Related]
15. Universal statistics of the scattering coefficient of chaotic microwave cavities. Hemmady S; Zheng X; Antonsen TM; Ott E; Anlage SM Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056215. PubMed ID: 16089642 [TBL] [Abstract][Full Text] [Related]
16. Wave function statistics for ballistic quantum transport through chaotic open billiards: statistical crossover and coexistence of regular and chaotic waves. Ishio H; Saichev AI; Sadreev AF; Berggren KF Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056208. PubMed ID: 11736055 [TBL] [Abstract][Full Text] [Related]
17. Chaotic scattering through coupled cavities. Takahashi K; Aono T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026207. PubMed ID: 17358405 [TBL] [Abstract][Full Text] [Related]
18. Reducing nonideal to ideal coupling in random matrix description of chaotic scattering: application to the time-delay problem. Savin DV; Fyodorov YV; Sommers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):035202. PubMed ID: 11308697 [TBL] [Abstract][Full Text] [Related]
19. Characterization of fluctuations of impedance and scattering matrices in wave chaotic scattering. Zheng X; Hemmady S; Antonsen TM; Anlage SM; Ott E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046208. PubMed ID: 16711918 [TBL] [Abstract][Full Text] [Related]
20. Chaotic scattering with localized losses: S-matrix zeros and reflection time difference for systems with broken time-reversal invariance. Osman M; Fyodorov YV Phys Rev E; 2020 Jul; 102(1-1):012202. PubMed ID: 32794980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]