These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 23003192)

  • 1. Universal critical dynamics in high resolution neuronal avalanche data.
    Friedman N; Ito S; Brinkman BA; Shimono M; DeVille RE; Dahmen KA; Beggs JM; Butler TC
    Phys Rev Lett; 2012 May; 108(20):208102. PubMed ID: 23003192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical properties of avalanches in networks.
    Larremore DB; Carpenter MY; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066131. PubMed ID: 23005186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Modularity Tunes Mesoscale Criticality in Biological Neuronal Networks.
    Okujeni S; Egert U
    J Neurosci; 2023 Apr; 43(14):2515-2526. PubMed ID: 36868860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical analyses support power law distributions found in neuronal avalanches.
    Klaus A; Yu S; Plenz D
    PLoS One; 2011; 6(5):e19779. PubMed ID: 21720544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
    Li X; Small M
    Chaos; 2012 Jun; 22(2):023104. PubMed ID: 22757511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches.
    Wu S; Zhang Y; Cui Y; Li H; Wang J; Guo L; Xia Y; Yao D; Xu P; Guo D
    Neural Netw; 2019 Feb; 110():91-103. PubMed ID: 30508808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical networks, power laws, and neuronal avalanches.
    Friedman EJ; Landsberg AS
    Chaos; 2013 Mar; 23(1):013135. PubMed ID: 23556972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling behavior in probabilistic neuronal cellular automata.
    Manchanda K; Yadav AC; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012704. PubMed ID: 23410356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple growth model constructs critical avalanche networks.
    Abbott LF; Rohrkemper R
    Prog Brain Res; 2007; 165():13-9. PubMed ID: 17925237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical phenomena and noise-induced phase transitions in neuronal networks.
    Lee KE; Lopes MA; Mendes JF; Goltsev AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012701. PubMed ID: 24580251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum likelihood estimators for truncated and censored power-law distributions show how neuronal avalanches may be misevaluated.
    Langlois D; Cousineau D; Thivierge JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012709. PubMed ID: 24580259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.
    Palva JM; Zhigalov A; Hirvonen J; Korhonen O; Linkenkaer-Hansen K; Palva S
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3585-90. PubMed ID: 23401536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Undersampled critical branching processes on small-world and random networks fail to reproduce the statistics of spike avalanches.
    Ribeiro TL; Ribeiro S; Belchior H; Caixeta F; Copelli M
    PLoS One; 2014; 9(4):e94992. PubMed ID: 24751599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of power laws in noncritical neuronal systems.
    Faqeeh A; Osat S; Radicchi F; Gleeson JP
    Phys Rev E; 2019 Jul; 100(1-1):010401. PubMed ID: 31499795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal avalanches and time-frequency representations in stimulus-evoked activity.
    Arviv O; Goldstein A; Shriki O
    Sci Rep; 2019 Sep; 9(1):13319. PubMed ID: 31527749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balance between excitation and inhibition controls the temporal organization of neuronal avalanches.
    Lombardi F; Herrmann HJ; Perrone-Capano C; Plenz D; de Arcangelis L
    Phys Rev Lett; 2012 Jun; 108(22):228703. PubMed ID: 23003665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avalanches in a stochastic model of spiking neurons.
    Benayoun M; Cowan JD; van Drongelen W; Wallace E
    PLoS Comput Biol; 2010 Jul; 6(7):e1000846. PubMed ID: 20628615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The criticality hypothesis: how local cortical networks might optimize information processing.
    Beggs JM
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):329-43. PubMed ID: 17673410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory neurons promote robust critical firing dynamics in networks of integrate-and-fire neurons.
    Lu Z; Squires S; Ott E; Girvan M
    Phys Rev E; 2016 Dec; 94(6-1):062309. PubMed ID: 28085342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.