These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 23003235)

  • 1. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors.
    Baker JG; Thorpe JI
    Phys Rev Lett; 2012 May; 108(21):211101. PubMed ID: 23003235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Momentum Entanglement for Atom Interferometry.
    Anders F; Idel A; Feldmann P; Bondarenko D; Loriani S; Lange K; Peise J; Gersemann M; Meyer-Hoppe B; Abend S; Gaaloul N; Schubert C; Schlippert D; Santos L; Rasel E; Klempt C
    Phys Rev Lett; 2021 Oct; 127(14):140402. PubMed ID: 34652182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Precision Limits of Displacement Noise-Free Interferometers.
    Gefen T; Tarafder R; Adhikari RX; Chen Y
    Phys Rev Lett; 2024 Jan; 132(2):020801. PubMed ID: 38277601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shot noise in gravitational-wave detectors with Fabry-Perot arms.
    Lyons TT; Regehr MW; Raab FJ
    Appl Opt; 2000 Dec; 39(36):6761-70. PubMed ID: 18354690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring gravity with the MIGA large scale atom interferometer.
    Canuel B; Bertoldi A; Amand L; Pozzo di Borgo E; Chantrait T; Danquigny C; Dovale Álvarez M; Fang B; Freise A; Geiger R; Gillot J; Henry S; Hinderer J; Holleville D; Junca J; Lefèvre G; Merzougui M; Mielec N; Monfret T; Pelisson S; Prevedelli M; Reynaud S; Riou I; Rogister Y; Rosat S; Cormier E; Landragin A; Chaibi W; Gaffet S; Bouyer P
    Sci Rep; 2018 Sep; 8(1):14064. PubMed ID: 30218107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter.
    Badurina L; Buchmueller O; Ellis J; Lewicki M; McCabe C; Vaskonen V
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210060. PubMed ID: 34923845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferometers for displacement-noise-free gravitational-wave detection.
    Chen Y; Pai A; Somiya K; Kawamura S; Sato S; Kokeyama K; Ward RL; Goda K; Mikhailov EE
    Phys Rev Lett; 2006 Oct; 97(15):151103. PubMed ID: 17155314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation.
    Korobko M; Kleybolte L; Ast S; Miao H; Chen Y; Schnabel R
    Phys Rev Lett; 2017 Apr; 118(14):143601. PubMed ID: 28430507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of upconverted scattered light on advanced interferometric gravitational wave detectors.
    Ottaway DJ; Fritschel P; Waldman SJ
    Opt Express; 2012 Apr; 20(8):8329-36. PubMed ID: 22513544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backscatter tolerant squeezed light source for advanced gravitational-wave detectors.
    Chua SS; Stefszky MS; Mow-Lowry CM; Buchler BC; Dwyer S; Shaddock DA; Lam PK; McClelland DE
    Opt Lett; 2011 Dec; 36(23):4680-2. PubMed ID: 22139282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase control of squeezed vacuum states of light in gravitational wave detectors.
    Dooley KL; Schreiber E; Vahlbruch H; Affeldt C; Leong JR; Wittel H; Grote H
    Opt Express; 2015 Apr; 23(7):8235-45. PubMed ID: 25968662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributed Review: A review of compact interferometers.
    Watchi J; Cooper S; Ding B; Mow-Lowry CM; Collette C
    Rev Sci Instrum; 2018 Dec; 89(12):121501. PubMed ID: 30599580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical transfer functions of Kerr nonlinear cavities and interferometers.
    Rehbein H; Harms J; Schnabel R; Danzmann K
    Phys Rev Lett; 2005 Nov; 95(19):193001. PubMed ID: 16383975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demodulation of intensity and shot noise in the optical heterodyne detection of laser interferometers for gravitational waves.
    Rakhmanov M
    Appl Opt; 2001 Dec; 40(36):6596-605. PubMed ID: 18364967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interacting Atomic Interferometry for Rotation Sensing Approaching the Heisenberg Limit.
    Ragole S; Taylor JM
    Phys Rev Lett; 2016 Nov; 117(20):203002. PubMed ID: 27886499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Measurement Theory in Gravitational-Wave Detectors.
    Danilishin SL; Khalili FY
    Living Rev Relativ; 2012; 15(1):5. PubMed ID: 28179836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twin matter waves for interferometry beyond the classical limit.
    Lücke B; Scherer M; Kruse J; Pezzé L; Deuretzbacher F; Hyllus P; Topic O; Peise J; Ertmer W; Arlt J; Santos L; Smerzi A; Klempt C
    Science; 2011 Nov; 334(6057):773-6. PubMed ID: 21998255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal noise computation of arbitrary masses in optical interferometers from first principles.
    Dickmann J
    Opt Express; 2021 Oct; 29(22):36546-36558. PubMed ID: 34809063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interferometer techniques for gravitational-wave detection.
    Bond C; Brown D; Freise A; Strain KA
    Living Rev Relativ; 2016; 19(1):3. PubMed ID: 28260967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.