These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 23003247)

  • 1. Variational two-particle density matrix calculation for the Hubbard model below half filling using spin-adapted lifting conditions.
    Verstichel B; van Aggelen H; Poelmans W; Van Neck D
    Phys Rev Lett; 2012 May; 108(21):213001. PubMed ID: 23003247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convex-set description of quantum phase transitions in the transverse Ising model using reduced-density-matrix theory.
    Schwerdtfeger CA; Mazziotti DA
    J Chem Phys; 2009 Jun; 130(22):224102. PubMed ID: 19530757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the spin liquid state of the Hubbard model on a honeycomb lattice.
    Clark BK; Abanin DA; Sondhi SL
    Phys Rev Lett; 2011 Aug; 107(8):087204. PubMed ID: 21929202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling expansion for the Bose-Hubbard and Jaynes-Cummings lattice models.
    Heil C; von der Linden W
    J Phys Condens Matter; 2012 Jul; 24(29):295601. PubMed ID: 22738846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational reduced density matrix method in the doubly-occupied configuration interaction space using four-particle N-representability conditions: Application to the XXZ model of quantum magnetism.
    Rubio-García A; Dukelsky J; Alcoba DR; Capuzzi P; Oña OB; Ríos E; Torre A; Lain L
    J Chem Phys; 2019 Oct; 151(15):154104. PubMed ID: 31640387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver.
    Nakata M; Braams BJ; Fujisawa K; Fukuda M; Percus JK; Yamashita M; Zhao Z
    J Chem Phys; 2008 Apr; 128(16):164113. PubMed ID: 18447427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active-space N-representability constraints for variational two-particle reduced density matrix calculations.
    Shenvi N; Izmaylov AF
    Phys Rev Lett; 2010 Nov; 105(21):213003. PubMed ID: 21231299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital-selective Mott phases of a one-dimensional three-orbital Hubbard model studied using computational techniques.
    Liu G; Kaushal N; Li S; Bishop CB; Wang Y; Johnston S; Alvarez G; Moreo A; Dagotto E
    Phys Rev E; 2016 Jun; 93(6):063313. PubMed ID: 27415393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational reduced density matrix method in the doubly occupied configuration interaction space using three-particle
    Alcoba DR; Capuzzi P; Rubio-García A; Dukelsky J; Massaccesi GE; Oña OB; Torre A; Lain L
    J Chem Phys; 2018 Nov; 149(19):194105. PubMed ID: 30466273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsystem constraints in variational second order density matrix optimization: curing the dissociative behavior.
    Verstichel B; van Aggelen H; Van Neck D; Ayers PW; Bultinck P
    J Chem Phys; 2010 Mar; 132(11):114113. PubMed ID: 20331287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of Hubbard model physics in WSe
    Tang Y; Li L; Li T; Xu Y; Liu S; Barmak K; Watanabe K; Taniguchi T; MacDonald AH; Shan J; Mak KF
    Nature; 2020 Mar; 579(7799):353-358. PubMed ID: 32188950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backflow Transformations via Neural Networks for Quantum Many-Body Wave Functions.
    Luo D; Clark BK
    Phys Rev Lett; 2019 Jun; 122(22):226401. PubMed ID: 31283262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Half metallic ferromagnets.
    Dowben P
    J Phys Condens Matter; 2007 Aug; 19(31):310301. PubMed ID: 21694101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular properties from variational reduced-density-matrix theory with three-particle N-representability conditions.
    Gidofalvi G; Mazziotti DA
    J Chem Phys; 2007 Jan; 126(2):024105. PubMed ID: 17228941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground-state phase diagram of a half-filled one-dimensional extended hubbard model.
    Jeckelmann E
    Phys Rev Lett; 2002 Dec; 89(23):236401. PubMed ID: 12485022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconductivity from repulsion in the doped 2D electronic Hubbard model: an entanglement perspective.
    Mukherjee A; Lal S
    J Phys Condens Matter; 2022 Apr; 34(27):. PubMed ID: 35413696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the two-particle propagator for the Hubbard model with the help of the Hubbard-I approximation.
    Rozhkov AV; Rakhmanov AL
    J Phys Condens Matter; 2011 Feb; 23(6):065601. PubMed ID: 21406930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feed-forward neural network based variational wave function for the fermionic Hubbard model in one dimension.
    Sarder MTH; Medhi A
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35772394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing the success of T-matrix diagrammatic theories in representing a modified Hubbard model.
    Pisarski P; Gooding RJ
    J Phys Condens Matter; 2011 May; 23(20):205603. PubMed ID: 21540503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.