These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1217 related articles for article (PubMed ID: 23003285)

  • 1. Strong coupling superconductivity, pseudogap, and Mott transition.
    Sordi G; Sémon P; Haule K; Tremblay AM
    Phys Rev Lett; 2012 May; 108(21):216401. PubMed ID: 23003285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An organizing principle for two-dimensional strongly correlated superconductivity.
    Fratino L; Sémon P; Sordi G; Tremblay AM
    Sci Rep; 2016 Mar; 6():22715. PubMed ID: 26964524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mott transition, antiferromagnetism, and d-wave superconductivity in two-dimensional organic conductors.
    Kyung B; Tremblay AM
    Phys Rev Lett; 2006 Jul; 97(4):046402. PubMed ID: 16907597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strongly correlated superconductivity and pseudogap phase near a multiband Mott insulator.
    Capone M; Fabrizio M; Castellani C; Tosatti E
    Phys Rev Lett; 2004 Jul; 93(4):047001. PubMed ID: 15323784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation-Driven Lifshitz Transition at the Emergence of the Pseudogap Phase in the Two-Dimensional Hubbard Model.
    Bragança H; Sakai S; Aguiar MCO; Civelli M
    Phys Rev Lett; 2018 Feb; 120(6):067002. PubMed ID: 29481286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite doping signatures of the Mott transition in the two-dimensional Hubbard model.
    Sordi G; Haule K; Tremblay AM
    Phys Rev Lett; 2010 Jun; 104(22):226402. PubMed ID: 20867185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superconductivity and the pseudogap in the two-dimensional Hubbard model.
    Gull E; Parcollet O; Millis AJ
    Phys Rev Lett; 2013 May; 110(21):216405. PubMed ID: 23745902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nodal-antinodal dichotomy and the two gaps of a superconducting doped Mott insulator.
    Civelli M; Capone M; Georges A; Haule K; Parcollet O; Stanescu TD; Kotliar G
    Phys Rev Lett; 2008 Feb; 100(4):046402. PubMed ID: 18352310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconducting phase and pairing fluctuations in the half-filled two-dimensional Hubbard model.
    Sentef M; Werner P; Gull E; Kampf AP
    Phys Rev Lett; 2011 Sep; 107(12):126401. PubMed ID: 22026778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Information-theoretic measures of superconductivity in a two-dimensional doped Mott insulator.
    Walsh C; Charlebois M; Sémon P; Sordi G; Tremblay AS
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superconducting fluctuations in the normal state of the two-dimensional Hubbard model.
    Chen X; LeBlanc JP; Gull E
    Phys Rev Lett; 2015 Sep; 115(11):116402. PubMed ID: 26406843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuating superconductivity in organic molecular metals close to the Mott transition.
    Nam MS; Ardavan A; Blundell SJ; Schlueter JA
    Nature; 2007 Oct; 449(7162):584-7. PubMed ID: 17914392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermi surface and pseudogap evolution in a cuprate superconductor.
    He Y; Yin Y; Zech M; Soumyanarayanan A; Yee MM; Williams T; Boyer MC; Chatterjee K; Wise WD; Zeljkovic I; Kondo T; Takeuchi T; Ikuta H; Mistark P; Markiewicz RS; Bansil A; Sachdev S; Hudson EW; Hoffman JE
    Science; 2014 May; 344(6184):608-11. PubMed ID: 24812396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo study of an unconventional superconducting phase in iridium oxide J(eff)=1/2 Mott insulators induced by carrier doping.
    Watanabe H; Shirakawa T; Yunoki S
    Phys Rev Lett; 2013 Jan; 110(2):027002. PubMed ID: 23383933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the dynamical pairing across the phase diagram of a strongly correlated high-temperature superconductor.
    Civelli M
    Phys Rev Lett; 2009 Sep; 103(13):136402. PubMed ID: 19905530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensional-crossover-driven Mott transition in the frustrated Hubbard model.
    Raczkowski M; Assaad FF
    Phys Rev Lett; 2012 Sep; 109(12):126404. PubMed ID: 23005966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping Asymmetry and Layer-Selective Metal-Insulator Transition in Trilayer K_{3+x}C_{60}.
    Yue C; Nomura Y; Werner P
    Phys Rev Lett; 2022 Aug; 129(6):066403. PubMed ID: 36018629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Monte Carlo study of an interaction-driven band-insulator-to-metal transition.
    Paris N; Bouadim K; Hebert F; Batrouni GG; Scalettar RT
    Phys Rev Lett; 2007 Jan; 98(4):046403. PubMed ID: 17358793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum phases in a doped Mott insulator on the Shastry-Sutherland lattice.
    Liu J; Trivedi N; Lee Y; Harmon BN; Schmalian J
    Phys Rev Lett; 2007 Nov; 99(22):227003. PubMed ID: 18233317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between antiferromagnetic and superconducting states, electron-hole doping asymmetry, and fermi-surface topology in high temperature superconductors.
    Pathak S; Shenoy VB; Randeria M; Trivedi N
    Phys Rev Lett; 2009 Jan; 102(2):027002. PubMed ID: 19257310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.