These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 230035)
1. Bile salt binding to serum components. Taurocholate incorporation into high-density lipoprotein revealed by photoaffinity labelling. Kramer W; Buscher HP; Gerok W; Kurz G Eur J Biochem; 1979 Dec; 102(1):1-9. PubMed ID: 230035 [TBL] [Abstract][Full Text] [Related]
2. Identification of the bile acid binding proteins in human serum by photoaffinity labeling. Kramer W Biochim Biophys Acta; 1995 Aug; 1257(3):230-8. PubMed ID: 7647099 [TBL] [Abstract][Full Text] [Related]
3. Bile-salt-binding polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labelling. Kramer W; Bickel U; Buscher HP; Gerok W; Kurz G Eur J Biochem; 1982 Dec; 129(1):13-24. PubMed ID: 7160376 [TBL] [Abstract][Full Text] [Related]
4. Bile salt shift from albumin to high-density lipoprotein in cholestasis. Buscher HP; Beger M; Sauerbier H; Gerok W Hepatology; 1987; 7(5):900-5. PubMed ID: 3653854 [TBL] [Abstract][Full Text] [Related]
5. 3-Diazirine-derivatives of bile salts for photoaffinity labeling. Kramer W; Schneider S J Lipid Res; 1989 Aug; 30(8):1281-8. PubMed ID: 2769079 [TBL] [Abstract][Full Text] [Related]
6. Photolabile derivatives of bile salts. Synthesis and suitability for photoaffinity labeling. Kramer W; Kurz G J Lipid Res; 1983 Jul; 24(7):910-23. PubMed ID: 6631225 [TBL] [Abstract][Full Text] [Related]
7. Identification and comparison of bile acid-binding polypeptides in ileal basolateral membrane. Lin MC; Weinberg SL; Kramer W; Burckhardt G; Wilson FA J Membr Biol; 1988 Nov; 106(1):1-11. PubMed ID: 3225838 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the bile acid transport system in normal and transformed hepatocytes. Photoaffinity labeling of the taurocholate carrier protein. von Dippe P; Levy D J Biol Chem; 1983 Jul; 258(14):8896-901. PubMed ID: 6863316 [TBL] [Abstract][Full Text] [Related]
9. Photoaffinity labeling studies of the rat renal sodium bile salt cotransport system. Burckhardt G; Kramer W; Kurz G; Wilson FA Biochem Biophys Res Commun; 1987 Mar; 143(3):1018-23. PubMed ID: 3566750 [TBL] [Abstract][Full Text] [Related]
10. Fluorescent derivatives of bile salts. II. Suitability of NBD-amino derivatives of bile salts for the study of biological transport. Schramm U; Dietrich A; Schneider S; Buscher HP; Gerok W; Kurz G J Lipid Res; 1991 Nov; 32(11):1769-79. PubMed ID: 1770296 [TBL] [Abstract][Full Text] [Related]
11. Identification of a single sinusoidal bile salt uptake system in skate liver. Fricker G; Hugentobler G; Meier PJ; Kurz G; Boyer JL Am J Physiol; 1987 Dec; 253(6 Pt 1):G816-22. PubMed ID: 3425718 [TBL] [Abstract][Full Text] [Related]
12. Thyroxine binding to the apolipoproteins of high density lipoproteins HDL2 and HDL3. Benvenga S; Cahnmann HJ; Rader D; Kindt M; Robbins J Endocrinology; 1992 Dec; 131(6):2805-11. PubMed ID: 1446618 [TBL] [Abstract][Full Text] [Related]
13. Interaction of potentially toxic bile acids with human plasma proteins: binding of lithocholic (3 alpha-hydroxy-5 beta-cholan-24-oic) acid to lipoproteins and albumin. Malavolti M; Fromm H; Ceryak S; Shehan KL Lipids; 1989 Jul; 24(7):673-6. PubMed ID: 2779375 [TBL] [Abstract][Full Text] [Related]
14. Formation of mixed micelles and vesicles of human apolipoproteins A-I and A-II with synthetic and natural lecithins and the bile salt sodium taurocholate: quasi-elastic light scattering studies. Donovan JM; Benedek GB; Carey MC Biochemistry; 1987 Dec; 26(25):8215-33. PubMed ID: 3126801 [TBL] [Abstract][Full Text] [Related]
15. Isolation and partial characterization of the lipoprotein families A and A-I from high-density lipoproteins of human serum. Norfeldt PI; Olofsson SO; Fager G; Bondjers G Eur J Biochem; 1981 Aug; 118(1):1-8. PubMed ID: 6793362 [TBL] [Abstract][Full Text] [Related]
16. Regulation of hepatic lipoprotein receptors in the dog. Rapid regulation of apolipoprotein B,E receptors, but not of apolipoprotein E receptors, by intestinal lipoproteins and bile acids. Angelin B; Raviola CA; Innerarity TL; Mahley RW J Clin Invest; 1983 Apr; 71(4):816-31. PubMed ID: 6300188 [TBL] [Abstract][Full Text] [Related]
17. Intestinal absorption of bile acids: paradoxical behaviour of the 14 kDa ileal lipid-binding protein in differential photoaffinity labelling. Kramer W; Corsiero D; Friedrich M; Girbig F; Stengelin S; Weyland C Biochem J; 1998 Jul; 333 ( Pt 2)(Pt 2):335-41. PubMed ID: 9657973 [TBL] [Abstract][Full Text] [Related]
18. Hepatic uptake and processing of free cholesterol from different lipoproteins with and without sodium taurocholate administration. An in vivo study in the rat. Bravo E; Cantafora A Biochim Biophys Acta; 1990 Jun; 1045(1):74-80. PubMed ID: 2369587 [TBL] [Abstract][Full Text] [Related]
19. Effect of the dimeric bile acid analogue S 0960, a specific inhibitor of the apical sodium-dependent bile salt transporter in the ileum, on the renal handling of taurocholate. Schlattjan JH; Fehsenfeld H; Greven J Arzneimittelforschung; 2003; 53(12):837-43. PubMed ID: 14732964 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic study of taurocholate binding to rat serum albumin. Picó GA; Favazza M; Gatti CA Gen Physiol Biophys; 1987 Dec; 6(6):637-43. PubMed ID: 3443286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]