These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23003603)

  • 1. Ultimate regime of high Rayleigh number convection in a porous medium.
    Hewitt DR; Neufeld JA; Lister JR
    Phys Rev Lett; 2012 Jun; 108(22):224503. PubMed ID: 23003603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection.
    Zhu X; Mathai V; Stevens RJAM; Verzicco R; Lohse D
    Phys Rev Lett; 2018 Apr; 120(14):144502. PubMed ID: 29694143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat transport in the geostrophic regime of rotating Rayleigh-Bénard convection.
    Ecke RE; Niemela JJ
    Phys Rev Lett; 2014 Sep; 113(11):114301. PubMed ID: 25259983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roughness as a Route to the Ultimate Regime of Thermal Convection.
    Toppaladoddi S; Succi S; Wettlaufer JS
    Phys Rev Lett; 2017 Feb; 118(7):074503. PubMed ID: 28256887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat transport in low-Rossby-number Rayleigh-Bénard convection.
    Julien K; Knobloch E; Rubio AM; Vasil GM
    Phys Rev Lett; 2012 Dec; 109(25):254503. PubMed ID: 23368470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of heat transfer in turbulent Rayleigh-Bénard convection.
    Urban P; Musilová V; Skrbek L
    Phys Rev Lett; 2011 Jul; 107(1):014302. PubMed ID: 21797545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Bénard convection.
    Wen B; Chini GP; Kerswell RR; Doering CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043012. PubMed ID: 26565337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh-Bénard convection at very high Rayleigh numbers [corrected].
    Urban P; Hanzelka P; Kralik T; Musilova V; Srnka A; Skrbek L
    Phys Rev Lett; 2012 Oct; 109(15):154301. PubMed ID: 23102312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalings of field correlations and heat transport in turbulent convection.
    Verma MK; Mishra PK; Pandey A; Paul S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016310. PubMed ID: 22400661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulence in rotating Rayleigh-Bénard convection in low-Prandtl-number fluids.
    Pharasi HK; Kannan R; Kumar K; Bhattacharjee JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):047301. PubMed ID: 22181319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of heat transfer in Rayleigh-Bénard convection under rarefied gas conditions.
    Goshayeshi B; Di Staso G; Toschi F; Clercx HJH
    Phys Rev E; 2020 Jul; 102(1-1):013102. PubMed ID: 32795017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roughness-Facilitated Local 1/2 Scaling Does Not Imply the Onset of the Ultimate Regime of Thermal Convection.
    Zhu X; Stevens RJAM; Verzicco R; Lohse D
    Phys Rev Lett; 2017 Oct; 119(15):154501. PubMed ID: 29077430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling in laminar natural convection in laterally heated cavities: is turbulence essential in the classical scaling of heat transfer?
    Yu H; Li N; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026303. PubMed ID: 17930138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plume dynamics in quasi-2D turbulent convection.
    Bizon C; Werne J; Predtechensky AA; Julien K; McCormick WD; Swift JB; Swinney HL
    Chaos; 1997 Mar; 7(1):107-124. PubMed ID: 12779641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prandtl-Number Dependence of Heat Transport in Laminar Horizontal Convection.
    Shishkina O; Wagner S
    Phys Rev Lett; 2016 Jan; 116(2):024302. PubMed ID: 26824542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries.
    Whitehead JP; Doering CR
    Phys Rev Lett; 2011 Jun; 106(24):244501. PubMed ID: 21770573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rayleigh-Bénard convection with uniform vertical magnetic field.
    Basak A; Raveendran R; Kumar K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033002. PubMed ID: 25314524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of the 1/2 power law in Rayleigh-Bénard convection.
    Roche PE; Castaing B; Chabaud B; Hébral B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):045303. PubMed ID: 11308901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a vertical magnetic field on turbulent rayleigh-Benard convection.
    Cioni S; Chaumat S; Sommeria J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):R4520-3. PubMed ID: 11089073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Evidence for the Existence of the Ultimate Regime in Rapidly Rotating Turbulent Thermal Convection.
    Jiang H; Wang D; Liu S; Sun C
    Phys Rev Lett; 2022 Nov; 129(20):204502. PubMed ID: 36462002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.