These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 23003640)

  • 1. Optoelectronic properties in monolayers of hybridized graphene and hexagonal boron nitride.
    Bernardi M; Palummo M; Grossman JC
    Phys Rev Lett; 2012 Jun; 108(22):226805. PubMed ID: 23003640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strongly Bound Excitons and Anisotropic Linear Absorption in Monolayer Graphullerene.
    Champagne A; Camarasa-Gómez M; Ricci F; Kronik L; Neaton JB
    Nano Lett; 2024 Jun; 24(23):7033-7039. PubMed ID: 38805193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Huge excitonic effects in layered hexagonal boron nitride.
    Arnaud B; Lebègue S; Rabiller P; Alouani M
    Phys Rev Lett; 2006 Jan; 96(2):026402. PubMed ID: 16486604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic, optical, and adsorption properties of Li-doped hexagonal boron nitride: a GW approach.
    Talukdar D; Bora SS; Ahmed GA
    Phys Chem Chem Phys; 2024 Jan; 26(5):4021-4028. PubMed ID: 38224145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate many-body calculation of electronic and optical band gap of bulk hexagonal boron nitride.
    Kolos M; Karlický F
    Phys Chem Chem Phys; 2019 Feb; 21(7):3999-4005. PubMed ID: 30707213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitons in boron nitride nanotubes: dimensionality effects.
    Wirtz L; Marini A; Rubio A
    Phys Rev Lett; 2006 Mar; 96(12):126104. PubMed ID: 16605932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G0W0, GW0 and GW Calculations on Top of PBE and HSE06 Orbitals.
    Karlický F; Otyepka M
    J Chem Theory Comput; 2013 Sep; 9(9):4155-64. PubMed ID: 26592406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental Screening Effects in 2D Materials: Renormalization of the Bandgap, Electronic Structure, and Optical Spectra of Few-Layer Black Phosphorus.
    Qiu DY; da Jornada FH; Louie SG
    Nano Lett; 2017 Aug; 17(8):4706-4712. PubMed ID: 28677398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor.
    Shin HC; Jang Y; Kim TH; Lee JH; Oh DH; Ahn SJ; Lee JH; Moon Y; Park JH; Yoo SJ; Park CY; Whang D; Yang CW; Ahn JR
    J Am Chem Soc; 2015 Jun; 137(21):6897-905. PubMed ID: 25973636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitons in two-dimensional atomic layer materials from time-dependent density functional theory: mono-layer and bi-layer hexagonal boron nitride and transition-metal dichalcogenides.
    Suzuki Y; Watanabe K
    Phys Chem Chem Phys; 2020 Feb; 22(5):2908-2916. PubMed ID: 31950126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical transitions in single-wall boron nitride nanotubes.
    Lauret JS; Arenal R; Ducastelle F; Loiseau A; Cau M; Attal-Tretout B; Rosencher E; Goux-Capes L
    Phys Rev Lett; 2005 Jan; 94(3):037405. PubMed ID: 15698324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic excitations of bulk LiCl from many-body perturbation theory.
    Jiang YF; Wang NP; Rohlfing M
    J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasiparticle band structures and optical properties of magnesium fluoride.
    Yi Z; Jia R
    J Phys Condens Matter; 2012 Feb; 24(8):085602. PubMed ID: 22277330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton Band Structure in Two-Dimensional Materials.
    Cudazzo P; Sponza L; Giorgetti C; Reining L; Sottile F; Gatti M
    Phys Rev Lett; 2016 Feb; 116(6):066803. PubMed ID: 26919006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of cubic boron nitride crystal UV absorption spectroscopy].
    Liu HB; Jia G; Chen G; Meng QJ; Zhang TC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1569-72. PubMed ID: 18844162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitonic effects on the optical response of graphene and bilayer graphene.
    Yang L; Deslippe J; Park CH; Cohen ML; Louie SG
    Phys Rev Lett; 2009 Oct; 103(18):186802. PubMed ID: 19905823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, optical properties and defects in nitride (III-V) nanoscale cage clusters.
    Shevlin SA; Guo ZX; van Dam HJ; Sherwood P; A Catlow CR; Sokol AA; Woodley SM
    Phys Chem Chem Phys; 2008 Apr; 10(14):1944-59. PubMed ID: 18368187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of bilayer quantum dot models based on coronene and its BN analogues with a BODIPY dye: Theoretical TD-CAM-B3LYP-D3 investigation.
    Petrushenko IK; Petrushenko KB
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():498-505. PubMed ID: 30176425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GeSe: Optical Spectroscopy and Theoretical Study of a van der Waals Solar Absorber.
    Murgatroyd PAE; Smiles MJ; Savory CN; Shalvey TP; Swallow JEN; Fleck N; Robertson CM; Jäckel F; Alaria J; Major JD; Scanlon DO; Veal TD
    Chem Mater; 2020 Apr; 32(7):3245-3253. PubMed ID: 32308255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.