These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 230039)

  • 1. Glutathione reductase from human erythrocytes. Amino-acid sequence of a major fragment that links the FAD, NADP and interface domains.
    Schiltz E; Blatterspiel R; Untucht-Grau R
    Eur J Biochem; 1979 Dec; 102(1):269-78. PubMed ID: 230039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione reductase from human erythrocytes: amino-acid sequence of the structurally known FAD-binding domain.
    Untucht-Grau R; Schirmer RH; Schirmer I; Krauth-Siegel RL
    Eur J Biochem; 1981 Nov; 120(2):407-19. PubMed ID: 7032915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain.
    Krauth-Siegel RL; Blatterspiel R; Saleh M; Schiltz E; Schirmer RH; Untucht-Grau R
    Eur J Biochem; 1982 Jan; 121(2):259-67. PubMed ID: 7060551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Influence of flavine-adenine-dinucleotide (FAD) on glutathione reductase activity of human erythrocytes, leukocytes and thrombocytes].
    Benöhr HC; Dreher R; Neunhöffer J; Waller HD
    Verh Dtsch Ges Inn Med; 1973; 79():464-5. PubMed ID: 4790262
    [No Abstract]   [Full Text] [Related]  

  • 5. The structure of the flavoenzyme glutathione reductase.
    Schulz GE; Schirmer RH; Sachsenheimer W; Pai EF
    Nature; 1978 May; 273(5658):120-4. PubMed ID: 25387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Glutathione reductase of human blood cells and its activation by flavin adenine dinucleotide (FAD)].
    Benöhr HC; Dreher R; Neunhöffer J; Waller HD
    Klin Wochenschr; 1973 Aug; 51(15):769-71. PubMed ID: 4733882
    [No Abstract]   [Full Text] [Related]  

  • 7. Method for the detection of a biochemical riboflavin deficiency. Stimulation of NADPH2-dependent glutathione reductase from human erythrocytes by FAD in vitro. Investigations on the vitamin B2 status in healthly people and geriatric patients.
    Glatzle D; Körner WF; Christeller S; Wiss O
    Int Z Vitaminforsch; 1970; 40(2):166-83. PubMed ID: 4393763
    [No Abstract]   [Full Text] [Related]  

  • 8. Complete amino acid sequence of NADH-cytochrome b5 reductase purified from human erythrocytes.
    Yubisui T; Miyata T; Iwanaga S; Tamura M; Takeshita M
    J Biochem; 1986 Feb; 99(2):407-22. PubMed ID: 3700359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulatory effect of histone on glutathione reductase of human erythrocytes.
    Giannitsis DJ
    Arzneimittelforschung; 1978; 28(2):300-1. PubMed ID: 580397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Letter: Concentrations of FAD and glutathione as they affect values for erythrocyte glutathione reductase.
    Hornbeck CL; Bradley DW
    Clin Chem; 1974 Apr; 20(4):512-3. PubMed ID: 4818208
    [No Abstract]   [Full Text] [Related]  

  • 11. High resolution structure and catalytic action of human glutathione reductase.
    Schulz GE; Karplus PA
    Biochem Soc Trans; 1988 Apr; 16(2):81-4. PubMed ID: 3371538
    [No Abstract]   [Full Text] [Related]  

  • 12. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected genetic and structural relationships of a long-forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase).
    Zhao Q; Yang XL; Holtzclaw WD; Talalay P
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1669-74. PubMed ID: 9050836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavin nucleotides, glutathione reductase and assessment of riboflavin status.
    Schorah CJ; Messenger D
    Int J Vitam Nutr Res; 1975; 45(1):39-50. PubMed ID: 237845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal and stable conditions for the determination of erythrocyte glutathione reductase activation coefficient to evaluate riboflavin status.
    Dror Y; Stern F; Komarnitsky M
    Int J Vitam Nutr Res; 1994; 64(4):257-62. PubMed ID: 7883462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced binding of FAD to glutathione reductase in G6PD deficiency.
    Flatz G
    Nature; 1970 May; 226(5247):755. PubMed ID: 5443251
    [No Abstract]   [Full Text] [Related]  

  • 17. Flavin binding site differences between lipoamide dehydrogenase and glutathione reductase as revealed by static and time-resolved flavin fluorescence.
    de Kok A; Visser AJ
    FEBS Lett; 1987 Jun; 218(1):135-8. PubMed ID: 3595857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of riboflavin depletion and repletion on the erythrocyte glutathione reductase in the rat.
    Tillotson JA; Sauberlich HE
    J Nutr; 1971 Nov; 101(11):1459-66. PubMed ID: 4399384
    [No Abstract]   [Full Text] [Related]  

  • 19. [A population study on glutathion reductase activity in human erythrocytes. The effects of nutrition and heredity].
    Grützner S; Wagenknecht C; Friedemann H; Prockat U
    Acta Biol Med Ger; 1973; 30(2):183-95. PubMed ID: 4146735
    [No Abstract]   [Full Text] [Related]  

  • 20. Convergent evolution of similar function in two structurally divergent enzymes.
    Kuriyan J; Krishna TS; Wong L; Guenther B; Pahler A; Williams CH; Model P
    Nature; 1991 Jul; 352(6331):172-4. PubMed ID: 2067578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.