These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23003938)

  • 1. Theory of fractional Lévy kinetics for cold atoms diffusing in optical lattices.
    Kessler DA; Barkai E
    Phys Rev Lett; 2012 Jun; 108(23):230602. PubMed ID: 23003938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of anomalous diffusion and fractional self-similarity in one dimension.
    Sagi Y; Brook M; Almog I; Davidson N
    Phys Rev Lett; 2012 Mar; 108(9):093002. PubMed ID: 22463630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights.
    Chechkin AV; Gonchar VY; Gorenflo R; Korabel N; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021111. PubMed ID: 18850790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions.
    Cartea A; del-Castillo-Negrete D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041105. PubMed ID: 17994934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signatures of Lévy flights with annealed disorder.
    Baudouin Q; Pierrat R; Eloy A; Nunes-Pereira EJ; Cuniasse PA; Mercadier N; Kaiser R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052114. PubMed ID: 25493747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling forms of particle densities for Lévy walks and strong anomalous diffusion.
    Dentz M; Le Borgne T; Lester DR; de Barros FP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032128. PubMed ID: 26465447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superdiffusive comb: application to experimental observation of anomalous diffusion in one dimension.
    Iomin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):032101. PubMed ID: 23030962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Lévy Stable Processes.
    Anderson J; Moradi S; Rafiq T
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deviations from Boltzmann-Gibbs Statistics in Confined Optical Lattices.
    Dechant A; Kessler DA; Barkai E
    Phys Rev Lett; 2015 Oct; 115(17):173006. PubMed ID: 26551114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractional dynamics on networks: emergence of anomalous diffusion and Lévy flights.
    Riascos AP; Mateos JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032809. PubMed ID: 25314484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Langevin dynamics for a Lévy walk with memory.
    Chen Y; Wang X; Deng W
    Phys Rev E; 2019 Jan; 99(1-1):012135. PubMed ID: 30780210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional diffusion equation for an n-dimensional correlated Lévy walk.
    Taylor-King JP; Klages R; Fedotov S; Van Gorder RA
    Phys Rev E; 2016 Jul; 94(1-1):012104. PubMed ID: 27575074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion equations for a Markovian jumping process.
    Srokowski T; Kamińska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021103. PubMed ID: 17025389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent random walk of cells involving anomalous effects and random death.
    Fedotov S; Tan A; Zubarev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042124. PubMed ID: 25974455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous spatial diffusion and multifractality in optical lattices.
    Dechant A; Lutz E
    Phys Rev Lett; 2012 Jun; 108(23):230601. PubMed ID: 23003937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous time anomalous diffusion in a composite medium.
    Stickler BA; Schachinger E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021116. PubMed ID: 21928958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach.
    del-Castillo-Negrete D; Carreras BA; Lynch VE
    Phys Rev Lett; 2003 Jul; 91(1):018302. PubMed ID: 12906582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of relaxation dynamics for anomalous diffusion processes in harmonic potential.
    Wang X; Chen Y; Deng W
    Phys Rev E; 2020 Apr; 101(4-1):042105. PubMed ID: 32422812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Lévy flight for light.
    Barthelemy P; Bertolotti J; Wiersma DS
    Nature; 2008 May; 453(7194):495-8. PubMed ID: 18497819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional Lévy stable motion can model subdiffusive dynamics.
    Burnecki K; Weron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021130. PubMed ID: 20866798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.