These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 23004223)
1. Design of chimeric expression elements that confer high-level gene activity in chromoplasts. Caroca R; Howell KA; Hasse C; Ruf S; Bock R Plant J; 2013 Feb; 73(3):368-79. PubMed ID: 23004223 [TBL] [Abstract][Full Text] [Related]
2. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Kahlau S; Bock R Plant Cell; 2008 Apr; 20(4):856-74. PubMed ID: 18441214 [TBL] [Abstract][Full Text] [Related]
3. Identification of cis-elements conferring high levels of gene expression in non-green plastids. Zhang J; Ruf S; Hasse C; Childs L; Scharff LB; Bock R Plant J; 2012 Oct; 72(1):115-28. PubMed ID: 22639905 [TBL] [Abstract][Full Text] [Related]
4. The early light-inducible protein (ELIP) gene is expressed during the chloroplast-to-chromoplast transition in ripening tomato fruit. Bruno AK; Wetzel CM J Exp Bot; 2004 Dec; 55(408):2541-8. PubMed ID: 15475376 [TBL] [Abstract][Full Text] [Related]
5. Contribution of 5'- and 3'-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Barnes D; Franklin S; Schultz J; Henry R; Brown E; Coragliotti A; Mayfield SP Mol Genet Genomics; 2005 Dec; 274(6):625-36. PubMed ID: 16231149 [TBL] [Abstract][Full Text] [Related]
6. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea. Zhu C; Yang Q; Ni X; Bai C; Sheng Y; Shi L; Capell T; Sandmann G; Christou P Physiol Plant; 2014 Apr; 150(4):493-504. PubMed ID: 24256196 [TBL] [Abstract][Full Text] [Related]
7. Constitutive Transcription and Stable RNA Accumulation in Plastids during the Conversion of Chloroplasts to Chromoplasts in Ripening Tomato Fruits. Marano MR; Carrillo N Plant Physiol; 1992 Nov; 100(3):1103-13. PubMed ID: 16653091 [TBL] [Abstract][Full Text] [Related]
8. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts. Pateraki I; Renato M; Azcón-Bieto J; Boronat A Plant J; 2013 Apr; 74(1):74-85. PubMed ID: 23302027 [TBL] [Abstract][Full Text] [Related]
9. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Ruf S; Hermann M; Berger IJ; Carrer H; Bock R Nat Biotechnol; 2001 Sep; 19(9):870-5. PubMed ID: 11533648 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive analysis of plastid gene expression during fruit development and ripening of kiwifruit. Chen Q; Shen P; Bock R; Li S; Zhang J Plant Cell Rep; 2022 Apr; 41(4):1103-1114. PubMed ID: 35226116 [TBL] [Abstract][Full Text] [Related]
11. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue. Egea I; Bian W; Barsan C; Jauneau A; Pech JC; Latché A; Li Z; Chervin C Ann Bot; 2011 Aug; 108(2):291-7. PubMed ID: 21788376 [TBL] [Abstract][Full Text] [Related]
12. Bacteriophage 5' untranslated regions for control of plastid transgene expression. Yang H; Gray BN; Ahner BA; Hanson MR Planta; 2013 Feb; 237(2):517-27. PubMed ID: 23053542 [TBL] [Abstract][Full Text] [Related]
13. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. Ling Q; Sadali NM; Soufi Z; Zhou Y; Huang B; Zeng Y; Rodriguez-Concepcion M; Jarvis RP Nat Plants; 2021 May; 7(5):655-666. PubMed ID: 34007040 [TBL] [Abstract][Full Text] [Related]
14. Whole transcriptome sequencing reveals genes involved in plastid/chloroplast division and development are regulated by the HP1/DDB1 at an early stage of tomato fruit development. Tang X; Tang Z; Huang S; Liu J; Liu J; Shi W; Tian X; Li Y; Zhang D; Yang J; Gao Y; Zeng D; Hou P; Niu X; Cao Y; Li G; Li X; Xiao F; Liu Y Planta; 2013 Nov; 238(5):923-36. PubMed ID: 23948801 [TBL] [Abstract][Full Text] [Related]
15. The suffulta mutation in tomato reveals a novel method of plastid replication during fruit ripening. Forth D; Pyke KA J Exp Bot; 2006; 57(9):1971-9. PubMed ID: 16595580 [TBL] [Abstract][Full Text] [Related]
16. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit. D'Andrea L; Amenós M; Rodríguez-Concepción M Methods Mol Biol; 2014; 1153():227-32. PubMed ID: 24777801 [TBL] [Abstract][Full Text] [Related]
17. Maintenance of Chloroplast Components during Chromoplast Differentiation in the Tomato Mutant Green Flesh. Cheung AY; McNellis T; Piekos B Plant Physiol; 1993 Apr; 101(4):1223-1229. PubMed ID: 12231777 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of a strong promoter of the early light-inducible protein gene from tomato. Timerbaev V; Dolgov S Planta; 2019 Oct; 250(4):1307-1323. PubMed ID: 31270599 [TBL] [Abstract][Full Text] [Related]
19. Neofunctionalization of Chromoplast Specific Lycopene Beta Cyclase Gene (CYC-B) in Tomato Clade. Mohan V; Pandey A; Sreelakshmi Y; Sharma R PLoS One; 2016; 11(4):e0153333. PubMed ID: 27070417 [TBL] [Abstract][Full Text] [Related]
20. Plastid Transformation in Tomato: A Vegetable Crop and Model Species. Ruf S; Bock R Methods Mol Biol; 2021; 2317():217-228. PubMed ID: 34028771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]