BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23004223)

  • 21. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.
    Apel W; Bock R
    Plant Physiol; 2009 Sep; 151(1):59-66. PubMed ID: 19587100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and functional characterization of lycopene beta-cyclase (CYC-B) promoter from Solanum habrochaites.
    Dalal M; Chinnusamy V; Bansal KC
    BMC Plant Biol; 2010 Apr; 10():61. PubMed ID: 20380705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silencing of the SlNAP7 gene influences plastid development and lycopene accumulation in tomato.
    Fu DQ; Meng LH; Zhu BZ; Zhu HL; Yan HX; Luo YB
    Sci Rep; 2016 Dec; 6():38664. PubMed ID: 27929131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromoplast development in ripening tomato fruit: identification of cDNAs for chromoplast-targeted proteins and characterization of a cDNA encoding a plastid-localized low-molecular-weight heat shock protein.
    Lawrence SD; Cline K; Moore GA
    Plant Mol Biol; 1997 Feb; 33(3):483-92. PubMed ID: 9049268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of the tomato chromoplast revealed by proteomic analysis.
    Barsan C; Sanchez-Bel P; Rombaldi C; Egea I; Rossignol M; Kuntz M; Zouine M; Latché A; Bouzayen M; Pech JC
    J Exp Bot; 2010 May; 61(9):2413-31. PubMed ID: 20363867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plastid transformation in tomato.
    Ruf S; Bock R
    Methods Mol Biol; 2014; 1132():265-76. PubMed ID: 24599859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microscopic Analyses of Fruit Cell Plastid Development in Loquat (
    Lu P; Wang R; Zhu C; Fu X; Wang S; Grierson D; Xu C
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30691226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CHRD, a plant member of the evolutionarily conserved YjgF family, influences photosynthesis and chromoplastogenesis.
    Leitner-Dagan Y; Ovadis M; Zuker A; Shklarman E; Ohad I; Tzfira T; Vainstein A
    Planta; 2006 Dec; 225(1):89-102. PubMed ID: 16845531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tomato fruit chromoplasts behave as respiratory bioenergetic organelles during ripening.
    Renato M; Pateraki I; Boronat A; Azcón-Bieto J
    Plant Physiol; 2014 Oct; 166(2):920-33. PubMed ID: 25125503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening.
    Karlova R; Rosin FM; Busscher-Lange J; Parapunova V; Do PT; Fernie AR; Fraser PD; Baxter C; Angenent GC; de Maagd RA
    Plant Cell; 2011 Mar; 23(3):923-41. PubMed ID: 21398570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components.
    Barsan C; Zouine M; Maza E; Bian W; Egea I; Rossignol M; Bouyssie D; Pichereaux C; Purgatto E; Bouzayen M; Latché A; Pech JC
    Plant Physiol; 2012 Oct; 160(2):708-25. PubMed ID: 22908117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening.
    D'Andrea L; Simon-Moya M; Llorente B; Llamas E; Marro M; Loza-Alvarez P; Li L; Rodriguez-Concepcion M
    J Exp Bot; 2018 Mar; 69(7):1557-1568. PubMed ID: 29385595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of carotenoid formation during tomato fruit ripening and development.
    Bramley PM
    J Exp Bot; 2002 Oct; 53(377):2107-13. PubMed ID: 12324534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants.
    D'Ambrosio C; Stigliani AL; Giorio G
    Transgenic Res; 2011 Feb; 20(1):47-60. PubMed ID: 20383744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell.
    Waters MT; Fray RG; Pyke KA
    Plant J; 2004 Aug; 39(4):655-67. PubMed ID: 15272881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of a carotenoid biosynthesis gene promoter during plant development.
    Corona V; Aracri B; Kosturkova G; Bartley GE; Pitto L; Giorgetti L; Scolnik PA; Giuliano G
    Plant J; 1996 Apr; 9(4):505-12. PubMed ID: 8624513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development.
    Wang YQ; Yang Y; Fei Z; Yuan H; Fish T; Thannhauser TW; Mazourek M; Kochian LV; Wang X; Li L
    J Exp Bot; 2013 Feb; 64(4):949-61. PubMed ID: 23314817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5' and 3' regulatory sequences.
    Valkov VT; Gargano D; Manna C; Formisano G; Dix PJ; Gray JC; Scotti N; Cardi T
    Transgenic Res; 2011 Feb; 20(1):137-51. PubMed ID: 20464632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of different 3' untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco.
    Tangphatsornruang S; Birch-Machin I; Newell CA; Gray JC
    Plant Mol Biol; 2011 Jul; 76(3-5):385-96. PubMed ID: 20859755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differentiation of chromoplasts and other plastids in plants.
    Sadali NM; Sowden RG; Ling Q; Jarvis RP
    Plant Cell Rep; 2019 Jul; 38(7):803-818. PubMed ID: 31079194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.