These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23004311)

  • 1. Interpocket pairing and gap symmetry in Fe-based superconductors with only electron pockets.
    Khodas M; Chubukov AV
    Phys Rev Lett; 2012 Jun; 108(24):247003. PubMed ID: 23004311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors.
    Lee WC; Zhang SC; Wu C
    Phys Rev Lett; 2009 May; 102(21):217002. PubMed ID: 19519129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the superconducting state of Fe-based compounds with doping.
    Maiti S; Korshunov MM; Maier TA; Hirschfeld PJ; Chubukov AV
    Phys Rev Lett; 2011 Sep; 107(14):147002. PubMed ID: 22107230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unconventional s-wave superconductivity in Fe(Se,Te).
    Hanaguri T; Niitaka S; Kuroki K; Takagi H
    Science; 2010 Apr; 328(5977):474-6. PubMed ID: 20413495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.
    Wang Q; Park JT; Feng Y; Shen Y; Hao Y; Pan B; Lynn JW; Ivanov A; Chi S; Matsuda M; Cao H; Birgeneau RJ; Efremov DV; Zhao J
    Phys Rev Lett; 2016 May; 116(19):197004. PubMed ID: 27232038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-reversal symmetry breaking superconductivity in the coexistence phase with magnetism in Fe pnictides.
    Hinojosa A; Fernandes RM; Chubukov AV
    Phys Rev Lett; 2014 Oct; 113(16):167001. PubMed ID: 25361274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic Gap Structure and Sign Reversal Symmetry in Monolayer Fe(Se,Te).
    Li Y; Shen D; Kreisel A; Chen C; Wei T; Xu X; Wang J
    Nano Lett; 2023 Jan; 23(1):140-147. PubMed ID: 36450010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors.
    Zhang D
    Phys Rev Lett; 2009 Oct; 103(18):186402. PubMed ID: 19905818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of nodal s ± -wave pairing symmetry in the Pu-based 115 superconductor family.
    Das T; Zhu JX; Graf MJ
    Sci Rep; 2015 Feb; 5():8632. PubMed ID: 25721375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model for determining the pairing symmetry and relative sign of the energy gap of iron-arsenide superconductors using tunneling spectroscopy.
    Wang D; Wan Y; Wang QH
    Phys Rev Lett; 2009 May; 102(19):197004. PubMed ID: 19518990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Andreev bound States as a phase-sensitive probe of the pairing symmetry of the iron pnictide superconductors.
    Ghaemi P; Wang F; Vishwanath A
    Phys Rev Lett; 2009 Apr; 102(15):157002. PubMed ID: 19518668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman-scattering detection of nearly degenerate s-wave and d-wave pairing channels in iron-based Ba0.6K0.4Fe2As2 and Rb0.8Fe1.6Se2 superconductors.
    Kretzschmar F; Muschler B; Böhm T; Baum A; Hackl R; Wen HH; Tsurkan V; Deisenhofer J; Loidl A
    Phys Rev Lett; 2013 May; 110(18):187002. PubMed ID: 23683238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrahedral and orbital pairing: a fully gapped pairing scenario for the iron-based superconductors.
    Ong TT; Coleman P
    Phys Rev Lett; 2013 Nov; 111(21):217003. PubMed ID: 24313519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glide-plane symmetry and superconducting gap structure of iron-based superconductors.
    Wang Y; Berlijn T; Hirschfeld PJ; Scalapino DJ; Maier TA
    Phys Rev Lett; 2015 Mar; 114(10):107002. PubMed ID: 25815960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological superconductivity in monolayer transition metal dichalcogenides.
    Hsu YT; Vaezi A; Fischer MH; Kim EA
    Nat Commun; 2017 Apr; 8():14985. PubMed ID: 28397804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between Magnetism, Superconductivity, and Orbital Order in 5-Pocket Model for Iron-Based Superconductors: Parquet Renormalization Group Study.
    Classen L; Xing RQ; Khodas M; Chubukov AV
    Phys Rev Lett; 2017 Jan; 118(3):037001. PubMed ID: 28157340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Fe versus two-Fe Brillouin zone of Fe-based superconductors: creation of the electron pockets by translational symmetry breaking.
    Lin CH; Berlijn T; Wang L; Lee CC; Yin WG; Ku W
    Phys Rev Lett; 2011 Dec; 107(25):257001. PubMed ID: 22243104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasiparticle interference in the spin-density wave phase of iron-based superconductors.
    Knolle J; Eremin I; Akbari A; Moessner R
    Phys Rev Lett; 2010 Jun; 104(25):257001. PubMed ID: 20867410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Violation of Anderson's theorem for the sign-reversing s-wave state of iron-pnictide superconductors.
    Onari S; Kontani H
    Phys Rev Lett; 2009 Oct; 103(17):177001. PubMed ID: 19905778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superconducting properties of the
    Bang Y; Stewart GR
    J Phys Condens Matter; 2017 Feb; 29(12):. PubMed ID: 28192286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.