These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23004337)

  • 1. Growth laws and self-similar growth regimes of coarsening two-dimensional foams: transition from dry to wet limits.
    Fortuna I; Thomas GL; de Almeida RM; Graner F
    Phys Rev Lett; 2012 Jun; 108(24):248301. PubMed ID: 23004337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble statistics and coarsening dynamics for quasi-two-dimensional foams with increasing liquid content.
    Roth AE; Jones CD; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042304. PubMed ID: 23679411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and coarsening at the surface of a dry three-dimensional aqueous foam.
    Roth AE; Chen BG; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062302. PubMed ID: 24483439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical mechanics of two-dimensional shuffled foams: geometry-topology correlation in small or large disorder limits.
    Durand M; Kraynik AM; van Swol F; Käfer J; Quilliet C; Cox S; Ataei Talebi S; Graner F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062309. PubMed ID: 25019778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An accurate von Neumann's law for three-dimensional foams.
    Hilgenfeldt S; Kraynik AM; Koehler SA; Stone HA
    Phys Rev Lett; 2001 Mar; 86(12):2685-8. PubMed ID: 11290011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D simulations of wet foam coarsening evidence a self similar growth regime.
    Thomas GL; Belmonte JM; Graner F; Glazier JA; de Almeida RM
    Colloids Surf A Physicochem Eng Asp; 2015 May; 473():109-114. PubMed ID: 27630449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarsening of a two-dimensional foam on a dome.
    Roth AE; Jones CD; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021402. PubMed ID: 23005758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimentally testing a generalized coarsening model for individual bubbles in quasi-two-dimensional wet foams.
    Chieco AT; Durian DJ
    Phys Rev E; 2021 Jan; 103(1-1):012610. PubMed ID: 33601566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Border-crossing model for the diffusive coarsening of two-dimensional and quasi-two-dimensional wet foams.
    Schimming CD; Durian DJ
    Phys Rev E; 2017 Sep; 96(3-1):032805. PubMed ID: 29346872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding robust descriptive features for the characterization of the coarsening dynamics of three dimensional whey protein foams.
    Dittmann J; Eggert A; Lambertus M; Dombrowski J; Rack A; Zabler S
    J Colloid Interface Sci; 2016 Apr; 467():148-157. PubMed ID: 26802273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarsening and mechanics in the bubble model for wet foams.
    Khakalo K; Baumgarten K; Tighe BP; Puisto A
    Phys Rev E; 2018 Jul; 98(1-1):012607. PubMed ID: 30110853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation of Platonic foam cells: effect on growth rate.
    Evans ME; Zirkelbach J; Schröder-Turk GE; Kraynik AM; Mecke K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061401. PubMed ID: 23005090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarsening of three-dimensional grains in crystals, or bubbles in dry foams, tends towards a universal, statistically scale-invariant regime.
    Thomas GL; de Almeida RM; Graner F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021407. PubMed ID: 17025425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarsening foams robustly reach a self-similar growth regime.
    Lambert J; Mokso R; Cantat I; Cloetens P; Glazier JA; Graner F; Delannay R
    Phys Rev Lett; 2010 Jun; 104(24):248304. PubMed ID: 20867343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical bubble size distributions in coarsening wet liquid foams.
    Galvani N; Pasquet M; Mukherjee A; Requier A; Cohen-Addad S; Pitois O; Höhler R; Rio E; Salonen A; Durian DJ; Langevin D
    Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2306551120. PubMed ID: 37708201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Plateau border size variations expected in three simple experiments on 2D liquid foams.
    Gay C; Rognon P; Reinelt D; Molino F
    Eur Phys J E Soft Matter; 2011 Jan; 34(1):2. PubMed ID: 21253804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of foams from the breakdown of the phase field crystal model.
    Guttenberg N; Goldenfeld N; Dantzig J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):065301. PubMed ID: 20866468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yield drag in a two-dimensional foam flow around a circular obstacle: effect of liquid fraction.
    Raufaste C; Dollet B; Cox S; Jiang Y; Graner F
    Eur Phys J E Soft Matter; 2007 Jun; 23(2):217-28. PubMed ID: 17619820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarsening dynamics of three-dimensional levitated foams: From wet to dry.
    Isert N; Maret G; Aegerter CM
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):116. PubMed ID: 24136181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of bubble size distribution in a gas-liquid foam using pulsed-field gradient nuclear magnetic resonance.
    Stevenson P; Sederman AJ; Mantle MD; Li X; Gladden LF
    J Colloid Interface Sci; 2010 Dec; 352(1):114-20. PubMed ID: 20832808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.