These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 23004706)
1. Directed transport of confined Brownian particles with torque. Radtke PK; Schimansky-Geier L Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051110. PubMed ID: 23004706 [TBL] [Abstract][Full Text] [Related]
2. Active motion assisted by correlated stochastic torques. Weber C; Radtke PK; Schimansky-Geier L; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011132. PubMed ID: 21867138 [TBL] [Abstract][Full Text] [Related]
3. The nonequilibrium glassy dynamics of self-propelled particles. Flenner E; Szamel G; Berthier L Soft Matter; 2016 Sep; 12(34):7136-49. PubMed ID: 27499055 [TBL] [Abstract][Full Text] [Related]
4. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights. Ai BQ; Shao ZG; Zhong WR J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711 [TBL] [Abstract][Full Text] [Related]
5. Brownian motion in non-equilibrium systems and the Ornstein-Uhlenbeck stochastic process. Donado F; Moctezuma RE; López-Flores L; Medina-Noyola M; Arauz-Lara JL Sci Rep; 2017 Oct; 7(1):12614. PubMed ID: 28974759 [TBL] [Abstract][Full Text] [Related]
6. Work fluctuations for a Brownian particle driven by a correlated external random force. Pal A; Sabhapandit S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052116. PubMed ID: 25493749 [TBL] [Abstract][Full Text] [Related]
7. Controlled propulsion and separation of helical particles at the nanoscale. Alcanzare MM; Thakore V; Ollila ST; Karttunen M; Ala-Nissila T Soft Matter; 2017 Mar; 13(11):2148-2154. PubMed ID: 28225092 [TBL] [Abstract][Full Text] [Related]
9. Transport of Brownian particles in a narrow, slowly varying serpentine channel. Wang X; Drazer G J Chem Phys; 2015 Apr; 142(15):154114. PubMed ID: 25903873 [TBL] [Abstract][Full Text] [Related]
10. Multiple current reversals and diffusion enhancement in a symmetrical periodic potential. Zeng C; Wang H; Nie L Chaos; 2012 Sep; 22(3):033125. PubMed ID: 23020464 [TBL] [Abstract][Full Text] [Related]
11. Anisotropic active Brownian particle with a fluctuating propulsion force. Thiffeault JL; Guo J Phys Rev E; 2022 Jul; 106(1):L012603. PubMed ID: 35974529 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of a Brownian circle swimmer. van Teeffelen S; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):020101. PubMed ID: 18850771 [TBL] [Abstract][Full Text] [Related]
13. Net transport due to noise-induced internal reciprocating motion. Makhnovskii YA; Rozenbaum VM; Yang DY; Lin SH J Chem Phys; 2009 Apr; 130(16):164101. PubMed ID: 19405555 [TBL] [Abstract][Full Text] [Related]
14. Active Brownian particles: mapping to equilibrium polymers and exact computation of moments. Shee A; Dhar A; Chaudhuri D Soft Matter; 2020 May; 16(20):4776-4787. PubMed ID: 32409794 [TBL] [Abstract][Full Text] [Related]
15. From Ornstein-Uhlenbeck dynamics to long-memory processes and fractional Brownian motion. Eliazar I; Klafter J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021115. PubMed ID: 19391714 [TBL] [Abstract][Full Text] [Related]
17. Biased transport of Brownian particles in a weakly corrugated serpentine channel. Wang X J Chem Phys; 2016 Jan; 144(4):044101. PubMed ID: 26827196 [TBL] [Abstract][Full Text] [Related]
18. Hydrodynamically enforced entropic Brownian pump. Ai BQ; He YF; Li FG; Zhong WR J Chem Phys; 2013 Apr; 138(15):154107. PubMed ID: 23614412 [TBL] [Abstract][Full Text] [Related]
20. Overview: The constructive role of noise in fluctuation driven transport and stochastic resonance. Astumian RD; Moss F Chaos; 1998 Sep; 8(3):533-538. PubMed ID: 12779756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]