These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 23004719)

  • 1. Nonequilibrium phase transitions and stationary-state solutions of a three-dimensional random-field Ising model under a time-dependent periodic external field.
    Yüksel Y; Vatansever E; Akıncı U; Polat H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051123. PubMed ID: 23004719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase transitions in a three-dimensional kinetic spin-1/2 Ising model with random field: effective-field-theory study.
    Costabile E; de Sousa JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011121. PubMed ID: 22400526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic phase transitions in the kinetic Ising model on the Bethe lattice.
    Akkaya Deviren S; Albayrak E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):022104. PubMed ID: 20866860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics.
    Buendía GM; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium magnetic properties in a two-dimensional kinetic mixed Ising system within the effective-field theory and Glauber-type stochastic dynamics approach.
    Ertaş M; Deviren B; Keskin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051110. PubMed ID: 23214741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Existence of a dynamic compensation temperature of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system in an oscillating field.
    Keskin M; Ertaş M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061140. PubMed ID: 20365151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G; White CJ; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic phase transition in the kinetic spin- Blume-Capel model under a time-dependent oscillating external field.
    Keskin M; Canko O; Deviren B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011110. PubMed ID: 16907063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective-field-theory analysis of the three-dimensional random-field Ising model on isometric lattices.
    Akıncı U; Yüksel Y; Polat H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061103. PubMed ID: 21797298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model.
    Robb DT; Rikvold PA; Berger A; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021124. PubMed ID: 17930023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field.
    Keskin M; Kantar E; Canko O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051130. PubMed ID: 18643049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field.
    Fujisaka H; Tutu H; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036109. PubMed ID: 11308711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicritical behavior in a random-field Ising model under a continuous-field probability distribution.
    Salmon OR; Crokidakis N; Nobre FD
    J Phys Condens Matter; 2009 Feb; 21(5):056005. PubMed ID: 21817311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic phase transitions in the presence of quenched randomness.
    Vatansever E; Fytas NG
    Phys Rev E; 2018 Jun; 97(6-1):062146. PubMed ID: 30011603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field.
    Korniss G; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056127. PubMed ID: 12513576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic phase transition in the kinetic spin-1 Blume-Capel model under a time-dependent oscillating external field.
    Keskin M; Canko O; Temizer U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036125. PubMed ID: 16241533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium steady state of the kinetic Glauber-Ising model under an alternating magnetic field.
    Baek SK; Marchesoni F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022136. PubMed ID: 25353451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium phase transitions and tricriticality in a three-dimensional lattice system with random-field competing kinetics.
    Crokidakis N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041138. PubMed ID: 20481708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ising fluids in an external magnetic field: an integral equation approach.
    Omelyan IP; Mryglod IM; Folk R; Fenz W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061506. PubMed ID: 15244575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic phase transition of the Blume-Capel model in an oscillating magnetic field.
    Vatansever E; Fytas NG
    Phys Rev E; 2018 Jan; 97(1-1):012122. PubMed ID: 29448362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.