These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23004740)

  • 1. Nanoscale simple-fluid behavior under steady shear.
    Yong X; Zhang LT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051202. PubMed ID: 23004740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase behavior of a simple dipolar fluid under shear flow in an electric field.
    McWhirter JL
    J Chem Phys; 2008 Jan; 128(3):034502. PubMed ID: 18205505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material functions of liquid n-hexadecane under steady shear via nonequilibrium molecular dynamics simulations: temperature, pressure, and density effects.
    Tseng HC; Wu JS; Chang RY
    J Chem Phys; 2009 Feb; 130(8):084904. PubMed ID: 19256624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Newtonian behavior in simple fluids.
    Delhommelle J; Petravic J; Evans DJ
    J Chem Phys; 2004 Apr; 120(13):6117-23. PubMed ID: 15267496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiparticle collision dynamics simulations of viscoelastic fluids: shear-thinning Gaussian dumbbells.
    Kowalik B; Winkler RG
    J Chem Phys; 2013 Mar; 138(10):104903. PubMed ID: 23514515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical-mechanical theory of rheology: Lennard-Jones fluids.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear thinning and shear dilatancy of liquid n-hexadecane via equilibrium and nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects.
    Tseng HC; Wu JS; Chang RY
    J Chem Phys; 2008 Jul; 129(1):014502. PubMed ID: 18624478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.
    Widmer Soyka RP; López A; Persson C; Cristofolini L; Ferguson SJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():43-53. PubMed ID: 23867293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid.
    Chen K; Wang Y; Xuan S; Gong X
    J Colloid Interface Sci; 2017 Jul; 497():378-384. PubMed ID: 28314143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galilean-invariant Nosé-Hoover-type thermostats.
    Pieprzyk S; Heyes DM; Maćkowiak S; Brańka AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033312. PubMed ID: 25871251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow.
    Ji S; Jiang R; Winkler RG; Gompper G
    J Chem Phys; 2011 Oct; 135(13):134116. PubMed ID: 21992291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.
    Ali N; Asghar Z; Anwar Bég O; Sajid M
    J Theor Biol; 2016 May; 397():22-32. PubMed ID: 26903204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations: steady shear flow behavior.
    Park EK; Song KW
    Arch Pharm Res; 2010 Jan; 33(1):141-50. PubMed ID: 20191355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Different Arrangements of Molecular Chains in Terms of Low and High Shear Rate's Viscosities on Heat and Mass Flow of Nonnewtonian Shear thinning Fluids.
    Hassan M; Faisal A; Javid K; Khan S; Ahmad A; Khan R
    Comb Chem High Throughput Screen; 2022; 25(7):1115-1126. PubMed ID: 34554900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic interactions between two equally sized spheres in viscoelastic fluids in shear flow.
    Snijkers F; Pasquino R; Vermant J
    Langmuir; 2013 May; 29(19):5701-13. PubMed ID: 23600865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-rate dependent shear viscosity of the Gaussian core model fluid.
    Ahmed A; Mausbach P; Sadus RJ
    J Chem Phys; 2009 Dec; 131(22):224511. PubMed ID: 20001061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonmodal stability in Hagen-Poiseuille flow of a shear thinning fluid.
    Liu R; Liu QS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066318. PubMed ID: 23005217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheology of hyperbranched polymer melts undergoing planar Couette flow.
    Le TC; Todd BD; Daivis PJ; Uhlherr A
    J Chem Phys; 2009 Jul; 131(4):044902. PubMed ID: 19655914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.