These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 23004743)
1. Combining molecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes. Babu JS; Sathian SP Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051205. PubMed ID: 23004743 [TBL] [Abstract][Full Text] [Related]
2. Physicochemical analysis of slip flow phenomena in liquids under nanoscale confinement. Babu JS; Uday S; Sekhar S; Sathian SP Eur Phys J E Soft Matter; 2015 Oct; 38(10):109. PubMed ID: 26490250 [TBL] [Abstract][Full Text] [Related]
3. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water. Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715 [TBL] [Abstract][Full Text] [Related]
4. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding. Joly L; Tocci G; Merabia S; Michaelides A J Phys Chem Lett; 2016 Apr; 7(7):1381-6. PubMed ID: 27012818 [TBL] [Abstract][Full Text] [Related]
5. The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes. Babu JS; Sathian SP J Chem Phys; 2011 May; 134(19):194509. PubMed ID: 21599075 [TBL] [Abstract][Full Text] [Related]
6. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L Nano Lett; 2010 Oct; 10(10):4067-73. PubMed ID: 20845964 [TBL] [Abstract][Full Text] [Related]
7. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement. Yang L; Guo Y; Diao D Phys Chem Chem Phys; 2017 May; 19(21):14048-14054. PubMed ID: 28518189 [TBL] [Abstract][Full Text] [Related]
8. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water. Bhadauria R; Sanghi T; Aluru NR J Chem Phys; 2015 Nov; 143(17):174702. PubMed ID: 26547177 [TBL] [Abstract][Full Text] [Related]
9. Strain engineering water transport in graphene nanochannels. Xiong W; Liu JZ; Ma M; Xu Z; Sheridan J; Zheng Q Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056329. PubMed ID: 22181520 [TBL] [Abstract][Full Text] [Related]
10. Water flow inside various geometric nano-confinement channels. Xu X; Zhao Y; Wang J; Zhang N; Wang C; Zhang J; Wei N Phys Chem Chem Phys; 2020 Nov; 22(42):24633-24639. PubMed ID: 33095223 [TBL] [Abstract][Full Text] [Related]
11. Friction of water slipping in carbon nanotubes. Ma MD; Shen L; Sheridan J; Liu JZ; Chen C; Zheng Q Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036316. PubMed ID: 21517596 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of water confined in a graphene nanochannel: dependence of friction on graphene chirality. Yang L; Guo Y Nanotechnology; 2020 Mar; 31(23):235702. PubMed ID: 32066118 [TBL] [Abstract][Full Text] [Related]
13. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation. Javadian S; Taghavi F; Yari F; Hashemianzadeh SM J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156 [TBL] [Abstract][Full Text] [Related]
14. The confined [Bmim][BF Wang Y; Huo F; He H; Zhang S Phys Chem Chem Phys; 2018 Jul; 20(26):17773-17780. PubMed ID: 29922773 [TBL] [Abstract][Full Text] [Related]
15. Effects of embedded carbon nanotube on properties of biomembrane. Li X; Shi Y; Miao B; Zhao Y J Phys Chem B; 2012 May; 116(18):5391-7. PubMed ID: 22515150 [TBL] [Abstract][Full Text] [Related]
16. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Ma M; Grey F; Shen L; Urbakh M; Wu S; Liu JZ; Liu Y; Zheng Q Nat Nanotechnol; 2015 Aug; 10(8):692-5. PubMed ID: 26149236 [TBL] [Abstract][Full Text] [Related]
17. Water confined in nanotubes and between graphene sheets: a first principle study. Cicero G; Grossman JC; Schwegler E; Gygi F; Galli G J Am Chem Soc; 2008 Feb; 130(6):1871-8. PubMed ID: 18211065 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes. Huang LL; Zhang LZ; Shao Q; Wang J; Lu LH; Lu XH; Jiang SY; Shen WF J Phys Chem B; 2006 Dec; 110(51):25761-8. PubMed ID: 17181218 [TBL] [Abstract][Full Text] [Related]
19. Effect of nanochannel dimension on the transport of water molecules. Su J; Guo H J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756 [TBL] [Abstract][Full Text] [Related]
20. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates. Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]