These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1719 related articles for article (PubMed ID: 23004770)
1. Droplet motion in one-component fluids on solid substrates with wettability gradients. Xu X; Qian T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770 [TBL] [Abstract][Full Text] [Related]
2. Contact line motion in confined liquid-gas systems: Slip versus phase transition. Xu X; Qian T J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449 [TBL] [Abstract][Full Text] [Related]
3. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients. Xu X; Qian T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061603. PubMed ID: 23005105 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels. Wu C; Xu X; Qian T J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493 [TBL] [Abstract][Full Text] [Related]
5. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
6. Thermocapillary-actuated contact-line motion of immiscible binary fluids over substrates with patterned wettability in narrow confinement. DasGupta D; Mondal PK; Chakraborty S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023011. PubMed ID: 25215824 [TBL] [Abstract][Full Text] [Related]
7. Spreading with evaporation and condensation in one-component fluids. Teshigawara R; Onuki A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021603. PubMed ID: 20866822 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamics of Leidenfrost droplets in one-component fluids. Xu X; Qian T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043013. PubMed ID: 23679519 [TBL] [Abstract][Full Text] [Related]
9. Droplet motion driven by humidity gradients during evaporation and condensation. Barrio-Zhang H; Ruiz-Gutiérrez É; Orejon D; Wells GG; Ledesma-Aguilar R Eur Phys J E Soft Matter; 2024 May; 47(5):32. PubMed ID: 38735905 [TBL] [Abstract][Full Text] [Related]
10. Dynamic van der Waals theory. Onuki A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036304. PubMed ID: 17500788 [TBL] [Abstract][Full Text] [Related]
11. On multiscale moving contact line theory. Li S; Fan H Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150224. PubMed ID: 26345090 [TBL] [Abstract][Full Text] [Related]
12. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability. Taylor MT; Qian T Phys Rev E; 2016 Mar; 93(3):033105. PubMed ID: 27078445 [TBL] [Abstract][Full Text] [Related]
13. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces. Dash S; Chandramohan A; Weibel JA; Garimella SV Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112 [TBL] [Abstract][Full Text] [Related]
14. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows. Qian T; Wu C; Lei SL; Wang XP; Sheng P J Phys Condens Matter; 2009 Nov; 21(46):464119. PubMed ID: 21715883 [TBL] [Abstract][Full Text] [Related]
15. Can hydrodynamic contact line paradox be solved by evaporation-condensation? Janeček V; Doumenc F; Guerrier B; Nikolayev VS J Colloid Interface Sci; 2015 Dec; 460():329-38. PubMed ID: 26348659 [TBL] [Abstract][Full Text] [Related]
16. Stability and dynamics of droplets on patterned substrates: insights from experiments and lattice Boltzmann simulations. Varnik F; Gross M; Moradi N; Zikos G; Uhlmann P; Müller-Buschbaum P; Magerl D; Raabe D; Steinbach I; Stamm M J Phys Condens Matter; 2011 May; 23(18):184112. PubMed ID: 21508489 [TBL] [Abstract][Full Text] [Related]
17. Effect of contact line dynamics on the thermocapillary motion of a droplet on an inclined plate. Karapetsas G; Sahu KC; Matar OK Langmuir; 2013 Jul; 29(28):8892-906. PubMed ID: 23786489 [TBL] [Abstract][Full Text] [Related]
18. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates. Pan Z; Dash S; Weibel JA; Garimella SV Langmuir; 2013 Dec; 29(51):15831-41. PubMed ID: 24320680 [TBL] [Abstract][Full Text] [Related]
19. Spontaneous self-dislodging of freezing water droplets and the role of wettability. Graeber G; Schutzius TM; Eghlidi H; Poulikakos D Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11040-11045. PubMed ID: 28973877 [TBL] [Abstract][Full Text] [Related]
20. Influence of surface wettability on transport mechanisms governing water droplet evaporation. Pan Z; Weibel JA; Garimella SV Langmuir; 2014 Aug; 30(32):9726-30. PubMed ID: 25105726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]