These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 23004785)

  • 1. Reversibility of red blood cell deformation.
    Zeitz M; Sens P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051904. PubMed ID: 23004785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why do red blood cells have asymmetric shapes even in a symmetric flow?
    Kaoui B; Biros G; Misbah C
    Phys Rev Lett; 2009 Oct; 103(18):188101. PubMed ID: 19905834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of red blood cell mechanical properties using AFM indentation and coarse-grained particle method.
    Barns S; Balanant MA; Sauret E; Flower R; Saha S; Gu Y
    Biomed Eng Online; 2017 Dec; 16(1):140. PubMed ID: 29258590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components.
    Mesarec L; Góźdź W; Kralj S; Fošnarič M; Penič S; Kralj-Iglič V; Iglič A
    Eur Biophys J; 2017 Dec; 46(8):705-718. PubMed ID: 28488019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Role of Curved Membrane Nanodomains, and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding.
    Mesarec L; Drab M; Penič S; Kralj-Iglič V; Iglič A
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33652934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical model of reticulocyte to erythrocyte shape transformation.
    Pawlowski PH; Burzyńska B; Zielenkiewicz P
    J Theor Biol; 2006 Nov; 243(1):24-38. PubMed ID: 16876199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells.
    Rodríguez-García R; López-Montero I; Mell M; Egea G; Gov NS; Monroy F
    Biophys J; 2015 Jun; 108(12):2794-806. PubMed ID: 26083919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Start-up shape dynamics of red blood cells in microcapillary flow.
    Tomaiuolo G; Guido S
    Microvasc Res; 2011 Jul; 82(1):35-41. PubMed ID: 21397612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deforming biological membranes: how the cytoskeleton affects a polymerizing fiber.
    Daniels DR; Wang JC; Briehl RW; Turner MS
    J Chem Phys; 2006 Jan; 124(2):024903. PubMed ID: 16422644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic and reversible shape response of red blood cells in synthetic liquid crystals.
    Nayani K; Evans AA; Spagnolie SE; Abbott NL
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26083-26090. PubMed ID: 33008877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton.
    Borghi N; Brochard-Wyart F
    Biophys J; 2007 Aug; 93(4):1369-79. PubMed ID: 17526591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoskeletal rearrangements in human red blood cells induced by snake venoms: light microscopy of shapes and NMR studies of membrane function.
    Yau TW; Kuchel RP; Koh JM; Szekely D; Mirtschin PJ; Kuchel PW
    Cell Biol Int; 2012 Jan; 36(1):87-97. PubMed ID: 21933154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciting cytoskeleton-membrane waves.
    Shlomovitz R; Gov NS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041911. PubMed ID: 18999459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stiffening of Red Blood Cells Induced by Cytoskeleton Disorders: A Joint Theory-Experiment Study.
    Lai L; Xu X; Lim CT; Cao J
    Biophys J; 2015 Dec; 109(11):2287-94. PubMed ID: 26636940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic modes of red blood cells in oscillatory shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061920. PubMed ID: 20866453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Red cell shape--a biophysical analysis].
    Rusu V; Lăcătuşu D; Răileanu I
    Rev Med Chir Soc Med Nat Iasi; 2007; 111(1):194-9. PubMed ID: 17595867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Transformations of erythrocytes shape and its regulation].
    Stasiuk M; Kijanka G; Kozubek A
    Postepy Biochem; 2009; 55(4):425-33. PubMed ID: 20201356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.