These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23004786)

  • 21. Diffusion in a Crowded, Rearranging Environment.
    Jain R; Sebastian KL
    J Phys Chem B; 2016 Apr; 120(16):3988-92. PubMed ID: 27029607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffusion kurtosis imaging and log-normal distribution function imaging enhance the visualisation of lesions in animal stroke models.
    Grinberg F; Ciobanu L; Farrher E; Shah NJ
    NMR Biomed; 2012 Nov; 25(11):1295-304. PubMed ID: 22461260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic tracking and mobility analysis of single GLUT4 storage vesicle in live 3T3-L1 cells.
    Li CH; Bai L; Li DD; Xia S; Xu T
    Cell Res; 2004 Dec; 14(6):480-6. PubMed ID: 15625015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of the kurtosis statistic to the evaluation of the risk of hearing loss in workers exposed to high-level complex noise.
    Zhao YM; Qiu W; Zeng L; Chen SS; Cheng XR; Davis RI; Hamernik RP
    Ear Hear; 2010 Aug; 31(4):527-32. PubMed ID: 20588120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-file dynamics with different diffusion constants.
    Ambjörnsson T; Lizana L; Lomholt MA; Silbey RJ
    J Chem Phys; 2008 Nov; 129(18):185106. PubMed ID: 19045434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Statistics of rare strong bursts in autocatalytic stochastic growth with diffusion.
    Nakao H; Mikhailov AS
    Chaos; 2003 Sep; 13(3):953-61. PubMed ID: 12946188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How the number of fitting points for the slope of the mean-square displacement influences the experimentally determined particle size distribution from single-particle tracking.
    Ernst D; Köhler J
    Phys Chem Chem Phys; 2013 Mar; 15(10):3429-32. PubMed ID: 23381508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Results for Nonlinear Diffusion Equations with Stochastic Resetting.
    Lenzi EK; Zola RS; Rosseto MP; Mendes RS; Ribeiro HV; Silva LRD; Evangelista LR
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved estimation of anomalous diffusion exponents in single-particle tracking experiments.
    Kepten E; Bronshtein I; Garini Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052713. PubMed ID: 23767572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.
    Lizana L; Ambjörnsson T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051103. PubMed ID: 20364943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How to quantify protein diffusion in the bacterial membrane.
    van den Wildenberg SM; Bollen YJ; Peterman EJ
    Biopolymers; 2011 May; 95(5):312-21. PubMed ID: 21240922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colossal Brownian yet non-Gaussian diffusion in a periodic potential: Impact of nonequilibrium noise amplitude statistics.
    Białas K; Spiechowicz J
    Chaos; 2021 Dec; 31(12):123107. PubMed ID: 34972330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of a passive sliding particle on a randomly fluctuating surface.
    Gopalakrishnan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011105. PubMed ID: 14995602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Curvature coupling dependence of membrane protein diffusion coefficients.
    Leitenberger SM; Reister-Gottfried E; Seifert U
    Langmuir; 2008 Feb; 24(4):1254-61. PubMed ID: 18072795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The shape of neural dependence.
    Jenison RL; Reale RA
    Neural Comput; 2004 Apr; 16(4):665-72. PubMed ID: 15025825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling.
    Anderson SW; Barry B; Soto J; Ozonoff A; O'Brien M; Jara H
    J Magn Reson Imaging; 2014 Apr; 39(4):827-34. PubMed ID: 24259401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiscale probability density function analysis: non-Gaussian and scale-invariant fluctuations of healthy human heart rate.
    Kiyono K; Struzik ZR; Aoyagi N; Yamamoto Y
    IEEE Trans Biomed Eng; 2006 Jan; 53(1):95-102. PubMed ID: 16402608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging.
    Jensen JH; Helpern JA; Ramani A; Lu H; Kaczynski K
    Magn Reson Med; 2005 Jun; 53(6):1432-40. PubMed ID: 15906300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comment on "Universal relation between skewness and kurtosis in complex dynamics".
    Celikoglu A; Tirnakli U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):066801. PubMed ID: 26764857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffusion approximation of neuronal models revisited.
    Cupera J
    Math Biosci Eng; 2014 Feb; 11(1):11-25. PubMed ID: 24245676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.