These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 23004828)

  • 1. Stochastic synchronization in blinking networks of chaotic maps.
    Porfiri M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056114. PubMed ID: 23004828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple estimation of synchronization threshold in ensembles of diffusively coupled chaotic systems.
    Stefański A; Wojewoda J; Kapitaniak T; Yanchuk S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026217. PubMed ID: 15447575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization of chaotic networks with time-delayed couplings: an analytic study.
    Englert A; Heiligenthal S; Kinzel W; Kanter I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046222. PubMed ID: 21599285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Criteria for stochastic pinning control of networks of chaotic maps.
    Mwaffo V; DeLellis P; Porfiri M
    Chaos; 2014 Mar; 24(1):013101. PubMed ID: 24697363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization of mobile chaotic oscillator networks.
    Fujiwara N; Kurths J; Díaz-Guilera A
    Chaos; 2016 Sep; 26(9):094824. PubMed ID: 27781439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the synchronizability of externally driven oscillators.
    Stefański A
    Chaos; 2008 Mar; 18(1):013106. PubMed ID: 18377057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictable nonwandering localization of covariant Lyapunov vectors and cluster synchronization in scale-free networks of chaotic maps.
    Kuptsov PV; Kuptsova AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032901. PubMed ID: 25314498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete chaotic synchronization in mutually coupled time-delay systems.
    Landsman AS; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026201. PubMed ID: 17358399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of nonlinear synchronization dynamics of oscillator networks by Laplacian spectral methods.
    McGraw PN; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):027104. PubMed ID: 17358453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming network resilience to synchronization through non-fast stochastic broadcasting.
    Jeter R; Porfiri M; Belykh I
    Chaos; 2018 Jul; 28(7):071104. PubMed ID: 30070517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symbolic synchronization and the detection of global properties of coupled dynamics from local information.
    Jalan S; Jost J; Atay FM
    Chaos; 2006 Sep; 16(3):033124. PubMed ID: 17014229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances.
    Liang J; Wang Z; Liu Y; Liu X
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):1073-83. PubMed ID: 18632398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.
    Feng CF; Xu XJ; Wang SJ; Wang YH
    Chaos; 2008 Jun; 18(2):023117. PubMed ID: 18601484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust outer synchronization between two complex networks with fractional order dynamics.
    Asheghan MM; Míguez J; Hamidi-Beheshti MT; Tavazoei MS
    Chaos; 2011 Sep; 21(3):033121. PubMed ID: 21974656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete synchronization of three-layer Rulkov neuron network coupled by electrical and chemical synapses.
    Ge P; Cheng L; Cao H
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38587536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lyapunov approach to synchronization of chaotic systems with vanishing nonlinear perturbations: From static to dynamic couplings.
    Arena P; Buscarino A; Fortuna L; Patanè L
    Phys Rev E; 2020 Jul; 102(1-1):012211. PubMed ID: 32794950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New eigenvalue based approach to synchronization in asymmetrically coupled networks.
    Li Z; Lee JJ
    Chaos; 2007 Dec; 17(4):043117. PubMed ID: 18163781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronous slowing down in coupled logistic maps via random network topology.
    Wang SJ; Du RH; Jin T; Wu XS; Qu SX
    Sci Rep; 2016 Mar; 6():23448. PubMed ID: 27021897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal time-varying coupling function can enhance synchronization in complex networks.
    Dayani Z; Parastesh F; Nazarimehr F; Rajagopal K; Jafari S; Schöll E; Kurths J
    Chaos; 2023 Mar; 33(3):033139. PubMed ID: 37003805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of desynchronous disturbances in synchronized chaotic one-way coupled map lattices.
    Lü H; Hu G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036212. PubMed ID: 15089397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.