These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 23004846)
1. Mean-field behavior in coupled oscillators with attractive and repulsive interactions. Hong H; Strogatz SH Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056210. PubMed ID: 23004846 [TBL] [Abstract][Full Text] [Related]
2. Conformists and contrarians in a Kuramoto model with identical natural frequencies. Hong H; Strogatz SH Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046202. PubMed ID: 22181240 [TBL] [Abstract][Full Text] [Related]
3. Exact results for the Kuramoto model with a bimodal frequency distribution. Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817 [TBL] [Abstract][Full Text] [Related]
4. Multiscale dynamics in communities of phase oscillators. Anderson D; Tenzer A; Barlev G; Girvan M; Antonsen TM; Ott E Chaos; 2012 Mar; 22(1):013102. PubMed ID: 22462978 [TBL] [Abstract][Full Text] [Related]
5. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators. Hong H; Strogatz SH Phys Rev Lett; 2011 Feb; 106(5):054102. PubMed ID: 21405399 [TBL] [Abstract][Full Text] [Related]
6. Collective mode reductions for populations of coupled noisy oscillators. Goldobin DS; Tyulkina IV; Klimenko LS; Pikovsky A Chaos; 2018 Oct; 28(10):101101. PubMed ID: 30384615 [TBL] [Abstract][Full Text] [Related]
7. Phase coherence induced by correlated disorder. Hong H; O'Keeffe KP; Strogatz SH Phys Rev E; 2016 Feb; 93(2):022219. PubMed ID: 26986343 [TBL] [Abstract][Full Text] [Related]
8. The asymptotic behavior of the order parameter for the infinite-N Kuramoto model. Mirollo RE Chaos; 2012 Dec; 22(4):043118. PubMed ID: 23278053 [TBL] [Abstract][Full Text] [Related]
9. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators. Ichiki A; Okumura K Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625 [TBL] [Abstract][Full Text] [Related]
10. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach. Pinto RS; Saa A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738 [TBL] [Abstract][Full Text] [Related]
11. Matrix coupling and generalized frustration in Kuramoto oscillators. Buzanello GL; Barioni AED; de Aguiar MAM Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358 [TBL] [Abstract][Full Text] [Related]
12. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators. Roberts DC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336 [TBL] [Abstract][Full Text] [Related]
13. Cooperative dynamics in coupled systems of fast and slow phase oscillators. Sakaguchi H; Okita T Phys Rev E; 2016 Feb; 93(2):022212. PubMed ID: 26986336 [TBL] [Abstract][Full Text] [Related]
14. Entrainment degree of globally coupled Winfree oscillators under external forcing. Zhang Y; Hoveijn I; Efstathiou K Chaos; 2022 Oct; 32(10):103121. PubMed ID: 36319288 [TBL] [Abstract][Full Text] [Related]
15. Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength. Hong H Phys Rev E; 2017 Jul; 96(1-1):012213. PubMed ID: 29347132 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of the Kuramoto model in the presence of correlation between distributions of frequencies and coupling strengths. Yuan D; Zhang M; Yang J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012910. PubMed ID: 24580300 [TBL] [Abstract][Full Text] [Related]
17. Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach. Barioni AED; de Aguiar MAM Chaos; 2021 Nov; 31(11):113141. PubMed ID: 34881619 [TBL] [Abstract][Full Text] [Related]