These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23004864)

  • 1. Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid.
    Ardekani AM; Gore E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056309. PubMed ID: 23004864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic fluid description of bacterial biofilm material properties.
    Klapper I; Rupp CJ; Cargo R; Purvedorj B; Stoodley P
    Biotechnol Bioeng; 2002 Nov; 80(3):289-96. PubMed ID: 12226861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of viscoelasticity on the collective behavior of swimming microorganisms.
    Bozorgi Y; Underhill PT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061901. PubMed ID: 22304110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid expulsion of microswimmers by a vortical flow.
    Sokolov A; Aranson IS
    Nat Commun; 2016 Mar; 7():11114. PubMed ID: 27005581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets.
    Das S; Kumar A
    Sci Rep; 2014 Nov; 4():7126. PubMed ID: 25410423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting biofilm deformation with a viscoelastic phase-field model: Modeling and experimental studies.
    Li M; Matouš K; Nerenberg R
    Biotechnol Bioeng; 2020 Nov; 117(11):3486-3498. PubMed ID: 32658320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying the digital image correlation method to estimate the mechanical properties of bacterial biofilms subjected to a wall shear stress.
    Mathias JD; Stoodley P
    Biofouling; 2009 Nov; 25(8):695-703. PubMed ID: 20183128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscale locomotion in a nematic liquid crystal.
    Krieger MS; Spagnolie SE; Powers T
    Soft Matter; 2015 Dec; 11(47):9115-25. PubMed ID: 26412078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm material properties as related to shear-induced deformation and detachment phenomena.
    Stoodley P; Cargo R; Rupp CJ; Wilson S; Klapper I
    J Ind Microbiol Biotechnol; 2002 Dec; 29(6):361-7. PubMed ID: 12483479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration.
    Rupp CJ; Fux CA; Stoodley P
    Appl Environ Microbiol; 2005 Apr; 71(4):2175-8. PubMed ID: 15812054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology.
    Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM
    Biotechnol Bioeng; 1999 Oct; 65(1):83-92. PubMed ID: 10440674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms.
    Körstgens V; Flemming HC; Wingender J; Borchard W
    J Microbiol Methods; 2001 Jul; 46(1):9-17. PubMed ID: 11412909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction and quantification of bacterial biofilm detachment using Glazier-Graner-Hogeweg method based model simulations.
    Sheraton MV; Melnikov VR; Sloot PMA
    J Theor Biol; 2019 Dec; 482():109994. PubMed ID: 31487498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic effects on bacterial biofilm development in a microfluidic environment.
    Kim J; Kim HS; Han S; Lee JY; Oh JE; Chung S; Park HD
    Lab Chip; 2013 May; 13(10):1846-9. PubMed ID: 23576069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary flow as a mechanism for the formation of biofilm streamers.
    Rusconi R; Lecuyer S; Autrusson N; Guglielmini L; Stone HA
    Biophys J; 2011 Mar; 100(6):1392-9. PubMed ID: 21402020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gyrotaxis in a steady vortical flow.
    Durham WM; Climent E; Stocker R
    Phys Rev Lett; 2011 Jun; 106(23):238102. PubMed ID: 21770545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of a microorganism in a sheared viscoelastic liquid.
    De Corato M; D'Avino G
    Soft Matter; 2016 Dec; 13(1):196-211. PubMed ID: 27414249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic fluid response can increase the speed and efficiency of a free swimmer.
    Teran J; Fauci L; Shelley M
    Phys Rev Lett; 2010 Jan; 104(3):038101. PubMed ID: 20366685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental and computational study of the hydrodynamics of high-velocity water microdrops for interproximal tooth cleaning.
    Rmaile A; Carugo D; Capretto L; Wharton JA; Thurner PJ; Aspiras M; Ward M; De Jager M; Stoodley P
    J Mech Behav Biomed Mater; 2015 Jun; 46():148-57. PubMed ID: 25792412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment.
    Orgad O; Oren Y; Walker SL; Herzberg M
    Biofouling; 2011 Aug; 27(7):787-98. PubMed ID: 21797737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.