These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 23004984)
1. Semiclassical approach to long time propagation in quantum chaos: predicting scars. Vergini EG Phys Rev Lett; 2012 Jun; 108(26):264101. PubMed ID: 23004984 [TBL] [Abstract][Full Text] [Related]
2. Exploring phase space localization of chaotic eigenstates via parametric variation. Cerruti NR; Lakshminarayan A; Lefebvre JH; Tomsovic S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016208. PubMed ID: 11304336 [TBL] [Abstract][Full Text] [Related]
3. Semiclassical propagator to evaluate off-diagonal matrix elements of the evolution operator between quantum states. Vergini EG Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):020901. PubMed ID: 25353408 [TBL] [Abstract][Full Text] [Related]
4. Measuring scars of periodic orbits. Kaplan L; Heller EJ Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6609-28. PubMed ID: 11969649 [TBL] [Abstract][Full Text] [Related]
5. Scarring by homoclinic and heteroclinic orbits. Wisniacki DA; Vergini E; Benito RM; Borondo F Phys Rev Lett; 2006 Sep; 97(9):094101. PubMed ID: 17026365 [TBL] [Abstract][Full Text] [Related]
6. Chiral scars in chaotic Dirac fermion systems. Xu H; Huang L; Lai YC; Grebogi C Phys Rev Lett; 2013 Feb; 110(6):064102. PubMed ID: 23432246 [TBL] [Abstract][Full Text] [Related]
7. Exact relations between homoclinic and periodic orbit actions in chaotic systems. Li J; Tomsovic S Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081 [TBL] [Abstract][Full Text] [Related]
8. Phase space localization of chaotic eigenstates: violating ergodicity. Lakshminarayan A; Cerruti NR; Tomsovic S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016209. PubMed ID: 11304337 [TBL] [Abstract][Full Text] [Related]
9. A semiclassical reversibility paradox in simple chaotic systems. Tomsovic S Philos Trans A Math Phys Eng Sci; 2016 Jun; 374(2069):. PubMed ID: 27140974 [TBL] [Abstract][Full Text] [Related]
10. Quantum chaos in a ripple billiard. Li W; Reichl LE; Wu B Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056220. PubMed ID: 12059693 [TBL] [Abstract][Full Text] [Related]
11. Semiclassical relation between open trajectories and periodic orbits for the Wigner time delay. Kuipers J; Sieber M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046219. PubMed ID: 18517722 [TBL] [Abstract][Full Text] [Related]
12. Quantum localization of chaotic eigenstates and the level spacing distribution. Batistić B; Robnik M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052913. PubMed ID: 24329337 [TBL] [Abstract][Full Text] [Related]
13. Order-chaos transition in correlation diagrams and quantization of period orbits. Arranz FJ; Montes J; Borondo F Phys Rev E; 2023 Sep; 108(3-1):034210. PubMed ID: 37849198 [TBL] [Abstract][Full Text] [Related]
14. Multifractal eigenstates of quantum chaos and the Thue-Morse sequence. Meenakshisundaram N; Lakshminarayan A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):065303. PubMed ID: 16089809 [TBL] [Abstract][Full Text] [Related]
15. Exact decomposition of homoclinic orbit actions in chaotic systems: Information reduction. Li J; Tomsovic S Phys Rev E; 2019 Mar; 99(3-1):032212. PubMed ID: 30999433 [TBL] [Abstract][Full Text] [Related]
16. Towards a semiclassical understanding of chaotic single- and many-particle quantum dynamics at post-Heisenberg time scales. Waltner D; Richter K Phys Rev E; 2019 Oct; 100(4-1):042212. PubMed ID: 31770924 [TBL] [Abstract][Full Text] [Related]
17. Quantum Scars and Regular Eigenstates in a Chaotic Spinor Condensate. Evrard B; Pizzi A; Mistakidis SI; Dag CB Phys Rev Lett; 2024 Jan; 132(2):020401. PubMed ID: 38277581 [TBL] [Abstract][Full Text] [Related]
18. First experimental test of a trace formula for billiard systems showing mixed dynamics. Dembowski C; Gräf HD; Heine A; Hesse T; Rehfeld H; Richter A Phys Rev Lett; 2001 Apr; 86(15):3284-7. PubMed ID: 11327951 [TBL] [Abstract][Full Text] [Related]
19. Impact of chaos on precursors of quantum criticality. García-Mata I; Vergini E; Wisniacki DA Phys Rev E; 2021 Dec; 104(6):L062202. PubMed ID: 35030879 [TBL] [Abstract][Full Text] [Related]
20. Scarring in classical chaotic dynamics with noise. Lippolis D; Shudo A; Yoshida K; Yoshino H Phys Rev E; 2021 May; 103(5):L050202. PubMed ID: 34134294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]