These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 23005001)

  • 1. Fractional topological phases and broken time-reversal symmetry in strained graphene.
    Ghaemi P; Cayssol J; Sheng DN; Vishwanath A
    Phys Rev Lett; 2012 Jun; 108(26):266801. PubMed ID: 23005001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction-induced topological insulator states in strained graphene.
    Abanin DA; Pesin DA
    Phys Rev Lett; 2012 Aug; 109(6):066802. PubMed ID: 23006292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-Polarized Nematic Order, Quantum Valley Hall States, and Field-Tunable Topological Transitions in Twisted Multilayer Graphene Systems.
    Zhang S; Dai X; Liu J
    Phys Rev Lett; 2022 Jan; 128(2):026403. PubMed ID: 35089764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene.
    Maher P; Wang L; Gao Y; Forsythe C; Taniguchi T; Watanabe K; Abanin D; Papić Z; Cadden-Zimansky P; Hone J; Kim P; Dean CR
    Science; 2014 Jul; 345(6192):61-4. PubMed ID: 24994646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite fermions and broken symmetries in graphene.
    Amet F; Bestwick AJ; Williams JR; Balicas L; Watanabe K; Taniguchi T; Goldhaber-Gordon D
    Nat Commun; 2015 Jan; 6():5838. PubMed ID: 25562690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing broken symmetry and topological defects in a quantum Hall ferromagnet.
    Liu X; Farahi G; Chiu CL; Papic Z; Watanabe K; Taniguchi T; Zaletel MP; Yazdani A
    Science; 2022 Jan; 375(6578):321-326. PubMed ID: 34855512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valley Polarization and Inversion in Strained Graphene via Pseudo-Landau Levels, Valley Splitting of Real Landau Levels, and Confined States.
    Li SY; Su Y; Ren YN; He L
    Phys Rev Lett; 2020 Mar; 124(10):106802. PubMed ID: 32216392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological states in multi-orbital HgTe honeycomb lattices.
    Beugeling W; Kalesaki E; Delerue C; Niquet YM; Vanmaekelbergh D; Morais Smith C
    Nat Commun; 2015 Mar; 6():6316. PubMed ID: 25754462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale strain engineering of giant pseudo-magnetic fields, valley polarization, and topological channels in graphene.
    Hsu CC; Teague ML; Wang JQ; Yeh NC
    Sci Adv; 2020 May; 6(19):eaat9488. PubMed ID: 32494692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field.
    Georgi A; Nemes-Incze P; Carrillo-Bastos R; Faria D; Viola Kusminskiy S; Zhai D; Schneider M; Subramaniam D; Mashoff T; Freitag NM; Liebmann M; Pratzer M; Wirtz L; Woods CR; Gorbachev RV; Cao Y; Novoselov KS; Sandler N; Morgenstern M
    Nano Lett; 2017 Apr; 17(4):2240-2245. PubMed ID: 28211276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Untwisting Moiré Physics: Almost Ideal Bands and Fractional Chern Insulators in Periodically Strained Monolayer Graphene.
    Gao Q; Dong J; Ledwith P; Parker D; Khalaf E
    Phys Rev Lett; 2023 Sep; 131(9):096401. PubMed ID: 37721816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competing ordered states with filling factor two in bilayer graphene.
    Velasco J; Lee Y; Zhang F; Myhro K; Tran D; Deo M; Smirnov D; MacDonald AH; Lau CN
    Nat Commun; 2014 Jul; 5():4550. PubMed ID: 25078144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional topological insulator state and topological phase transition in bilayer graphene.
    Qiao Z; Tse WK; Jiang H; Yao Y; Niu Q
    Phys Rev Lett; 2011 Dec; 107(25):256801. PubMed ID: 22243099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum parity Hall effect in Bernal-stacked trilayer graphene.
    Stepanov P; Barlas Y; Che S; Myhro K; Voigt G; Pi Z; Watanabe K; Taniguchi T; Smirnov D; Zhang F; Lake RK; MacDonald AH; Lau CN
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10286-10290. PubMed ID: 31053618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic-Field-Tunable Valley-Contrasting Pseudomagnetic Confinement in Graphene.
    Ren YN; Zhuang YC; Sun QF; He L
    Phys Rev Lett; 2022 Aug; 129(7):076802. PubMed ID: 36018692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological phase transition induced by spin-orbit coupling in bilayer graphene.
    Xu L; Zhou Y; Gong CD
    J Phys Condens Matter; 2013 Aug; 25(33):335503. PubMed ID: 23877043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broken-symmetry states in doubly gated suspended bilayer graphene.
    Weitz RT; Allen MT; Feldman BE; Martin J; Yacoby A
    Science; 2010 Nov; 330(6005):812-6. PubMed ID: 20947726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Landau level mixing on the fractional quantum Hall effect in monolayer graphene.
    Peterson MR; Nayak C
    Phys Rev Lett; 2014 Aug; 113(8):086401. PubMed ID: 25192110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interacting multi-channel topological boundary modes in a quantum Hall valley system.
    Randeria MT; Agarwal K; Feldman BE; Ding H; Ji H; Cava RJ; Sondhi SL; Parameswaran SA; Yazdani A
    Nature; 2019 Feb; 566(7744):363-367. PubMed ID: 30728501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilayer graphene. Electron-hole asymmetric integer and fractional quantum Hall effect in bilayer graphene.
    Kou A; Feldman BE; Levin AJ; Halperin BI; Watanabe K; Taniguchi T; Yacoby A
    Science; 2014 Jul; 345(6192):55-7. PubMed ID: 24994644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.