These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 23005017)

  • 1. Allele-specific analysis of DNA replication origins in mammalian cells.
    Bartholdy B; Mukhopadhyay R; Lajugie J; Aladjem MI; Bouhassira EE
    Nat Commun; 2015 May; 6():7051. PubMed ID: 25987481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of DNA replication timing in single cells: Yes! We're all individuals.
    Donaldson AD; Nieduszynski CA
    Genome Biol; 2019 May; 20(1):111. PubMed ID: 31146781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome replication in asynchronously growing microbial populations.
    Pflug FG; Bhat D; Pigolotti S
    PLoS Comput Biol; 2024 Jan; 20(1):e1011753. PubMed ID: 38181054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles.
    Droghetti R; Agier N; Fischer G; Gherardi M; Cosentino Lagomarsino M
    Elife; 2021 May; 10():. PubMed ID: 34013887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochasticity of replication forks' speeds plays a key role in the dynamics of DNA replication.
    Yousefi R; Rowicka M
    PLoS Comput Biol; 2019 Dec; 15(12):e1007519. PubMed ID: 31869320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference of origin firing time distributions, origin interference and licencing probabilities from Next Generation Sequencing data.
    Bazarova A; Nieduszynski CA; Akerman I; Burroughs NJ
    Nucleic Acids Res; 2019 Mar; 47(5):2229-2243. PubMed ID: 30859196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Interplay of the DNA Replication Program and the Intra-S Phase Checkpoint Pathway.
    Ciardo D; Goldar A; Marheineke K
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30700024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-to-cell variability and robustness in S-phase duration from genome replication kinetics.
    Zhang Q; Bassetti F; Gherardi M; Lagomarsino MC
    Nucleic Acids Res; 2017 Aug; 45(14):8190-8198. PubMed ID: 28854733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations.
    Goldar A; Arneodo A; Audit B; Argoul F; Rappailles A; Guilbaud G; Petryk N; Kahli M; Hyrien O
    Sci Rep; 2016 Mar; 6():22469. PubMed ID: 26935043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chromatin structure-based model accurately predicts DNA replication timing in human cells.
    Gindin Y; Valenzuela MS; Aladjem MI; Meltzer PS; Bilke S
    Mol Syst Biol; 2014 Mar; 10(3):722. PubMed ID: 24682507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human genome replication proceeds through four chromatin states.
    Julienne H; Zoufir A; Audit B; Arneodo A
    PLoS Comput Biol; 2013; 9(10):e1003233. PubMed ID: 24130466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm.
    Audit B; Baker A; Chen CL; Rappailles A; Guilbaud G; Julienne H; Goldar A; d'Aubenton-Carafa Y; Hyrien O; Thermes C; Arneodo A
    Nat Protoc; 2013 Jan; 8(1):98-110. PubMed ID: 23237832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking the DNA strand asymmetry to the spatio-temporal replication program: II. Accounting for neighbor-dependent substitution rates.
    Baker A; Chen CL; Julienne H; Audit B; d'Aubenton-Carafa Y; Thermes C; Arneodo A
    Eur Phys J E Soft Matter; 2012 Nov; 35(11):123. PubMed ID: 23179013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring where and when replication initiates from genome-wide replication timing data.
    Baker A; Audit B; Yang SC; Bechhoefer J; Arneodo A
    Phys Rev Lett; 2012 Jun; 108(26):268101. PubMed ID: 23005017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and epigenetic determinants of DNA replication origins, position and activation.
    Méchali M; Yoshida K; Coulombe P; Pasero P
    Curr Opin Genet Dev; 2013 Apr; 23(2):124-31. PubMed ID: 23541525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring the spatiotemporal DNA replication program from noisy data.
    Baker A; Bechhoefer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032703. PubMed ID: 24730871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model.
    Jun S; Zhang H; Bechhoefer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011908. PubMed ID: 15697631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae.
    Supady A; Klipp E; Barberis M
    J Biotechnol; 2013 Oct; 168(2):174-84. PubMed ID: 23850861
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.