These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 23005067)

  • 1. Geometrical frustration of an extended Hubbard diamond chain in the quasiatomic limit.
    Rojas O; de Souza SM; Ananikian NS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061123. PubMed ID: 23005067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of the next-nearest-neighbour density-density interaction in the atomic limit of the extended Hubbard model.
    Kapcia K; Robaszkiewicz S
    J Phys Condens Matter; 2011 Mar; 23(10):105601. PubMed ID: 21335638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase separation in a lattice model of a superconductor with pair hopping.
    Kapcia K; Robaszkiewicz S; Micnas R
    J Phys Condens Matter; 2012 May; 24(21):215601. PubMed ID: 22543513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The magnetic field induced phase separation in a model of a superconductor with local electron pairing.
    Kapcia K; Robaszkiewicz S
    J Phys Condens Matter; 2013 Feb; 25(6):065603. PubMed ID: 23334285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random site dilution properties of frustrated magnets on a hierarchical lattice.
    Fortin JY
    J Phys Condens Matter; 2013 Jul; 25(29):296004. PubMed ID: 23807800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-dimensional extended Hubbard model in the atomic limit.
    Mancini F; Mancini FP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061120. PubMed ID: 18643230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic signatures of geometrical frustration in clusters.
    Juliano RC; Santos EG; Gusmão MA
    J Phys Condens Matter; 2020 Feb; 32(7):075602. PubMed ID: 31671418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coulomb interaction effects on the Majorana states in quantum wires.
    Manolescu A; Marinescu DC; Stanescu TD
    J Phys Condens Matter; 2014 Apr; 26(17):172203. PubMed ID: 24722427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetization process, bipartite entanglement, and enhanced magnetocaloric effect of the exactly solved spin-1/2 Ising-Heisenberg tetrahedral chain.
    Strečka J; Rojas O; Verkholyak T; Lyra ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022143. PubMed ID: 25353458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics in the one-dimensional extended ionic Hubbard model.
    Hafez M; Abolhassani MR
    J Phys Condens Matter; 2011 Jun; 23(24):245602. PubMed ID: 21628789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linked-cluster expansion for the Green's function of the infinite-U Hubbard model.
    Khatami E; Perepelitsky E; Rigol M; Shastry BS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063301. PubMed ID: 25019906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent current and Drude weight for the one-dimensional Hubbard model from current lattice density functional theory.
    Akande A; Sanvito S
    J Phys Condens Matter; 2012 Feb; 24(5):055602. PubMed ID: 22248571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground state phases of the half-filled one-dimensional extended hubbard model.
    Sandvik AW; Balents L; Campbell DK
    Phys Rev Lett; 2004 Jun; 92(23):236401. PubMed ID: 15245176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on a frustrated Heisenberg spin chain with alternating ferromagnetic and antiferromagnetic exchanges.
    Sahoo S; Durga Prasad Goli VM; Sen D; Ramasesha S
    J Phys Condens Matter; 2014 Jul; 26(27):276002. PubMed ID: 24935169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature pseudo-phase-transition in an extended Hubbard diamond chain.
    Rojas O; de Souza SM; Torrico J; Veríssimo LM; Pereira MSS; Lyra ML
    Phys Rev E; 2021 Apr; 103(4-1):042123. PubMed ID: 34006009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach to time-dependent transport through an interacting quantum dot within the Keldysh formalism.
    Vovchenko V; Anchishkin D; Azema J; Lombardo P; Hayn R; Daré AM
    J Phys Condens Matter; 2014 Jan; 26(1):015306. PubMed ID: 24292208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene.
    Cannuccia E; Marini A
    Phys Rev Lett; 2011 Dec; 107(25):255501. PubMed ID: 22243089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classical antiferromagnetism in kinetically frustrated electronic models.
    Sposetti CN; Bravo B; Trumper AE; Gazza CJ; Manuel LO
    Phys Rev Lett; 2014 May; 112(18):187204. PubMed ID: 24856719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport through a mixed-valence molecular transistor in the sequential-tunneling regime: Theoretical insight from the two-site Peierls-Hubbard model.
    Hsu LY; Tsai TW; Jin BY
    J Chem Phys; 2010 Oct; 133(14):144705. PubMed ID: 20950028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local density of states of the one-dimensional spinless fermion model.
    Jeckelmann E
    J Phys Condens Matter; 2013 Jan; 25(1):014002. PubMed ID: 23221007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.