These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 23005203)
1. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study. Setter E; Bucher I; Haber S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203 [TBL] [Abstract][Full Text] [Related]
2. Confined swimming of bio-inspired microrobots in rectangular channels. Temel FZ; Yesilyurt S Bioinspir Biomim; 2015 Feb; 10(1):016015. PubMed ID: 25642947 [TBL] [Abstract][Full Text] [Related]
3. Locomotion and transport in a hexatic liquid crystal. Krieger MS; Spagnolie SE; Powers TR Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052503. PubMed ID: 25493806 [TBL] [Abstract][Full Text] [Related]
4. Speed of a swimming sheet in Newtonian and viscoelastic fluids. Dasgupta M; Liu B; Fu HC; Berhanu M; Breuer KS; Powers TR; Kudrolli A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013015. PubMed ID: 23410434 [TBL] [Abstract][Full Text] [Related]
5. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer. Peng J; Alben S Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408 [TBL] [Abstract][Full Text] [Related]
6. Small-amplitude swimmers can self-propel faster in viscoelastic fluids. Riley EE; Lauga E J Theor Biol; 2015 Oct; 382():345-55. PubMed ID: 26163369 [TBL] [Abstract][Full Text] [Related]
7. Optimal swimming of a sheet. Montenegro-Johnson TD; Lauga E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):060701. PubMed ID: 25019709 [TBL] [Abstract][Full Text] [Related]
9. Self-motion effects on hydrodynamic pressure sensing: part I. forward-backward motion. Akanyeti O; Chambers LD; Ježov J; Brown J; Venturelli R; Kruusmaa M; Megill WM; Fiorini P Bioinspir Biomim; 2013 Jun; 8(2):026001. PubMed ID: 23462257 [TBL] [Abstract][Full Text] [Related]
10. Low-Reynolds-number swimming in viscous two-phase fluids. Du J; Keener JP; Guy RD; Fogelson AL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036304. PubMed ID: 22587177 [TBL] [Abstract][Full Text] [Related]
11. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications. Palagi S; Jager EW; Mazzolai B; Beccai L Bioinspir Biomim; 2013 Dec; 8(4):046004. PubMed ID: 24103844 [TBL] [Abstract][Full Text] [Related]
12. Propulsive performance of a body with a traveling-wave surface. Tian FB; Lu XY; Luo H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016304. PubMed ID: 23005522 [TBL] [Abstract][Full Text] [Related]
13. Numerical study of a microscopic artificial swimmer. Gauger E; Stark H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021907. PubMed ID: 17025472 [TBL] [Abstract][Full Text] [Related]
14. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. Borazjani I; Sotiropoulos F J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905 [TBL] [Abstract][Full Text] [Related]
15. Swimming of a deformable slab in a viscous incompressible fluid with inertia. Felderhof BU Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063014. PubMed ID: 26764811 [TBL] [Abstract][Full Text] [Related]
16. A neutrally stable shell in a Stokes flow: a rotational Taylor's sheet. Orsi G; De Simone A; Maurini C; Vidoli S Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190178. PubMed ID: 31423098 [TBL] [Abstract][Full Text] [Related]
17. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water. Blake RW Bioinspir Biomim; 2009 Mar; 4(1):015004. PubMed ID: 19258689 [TBL] [Abstract][Full Text] [Related]
18. Propulsion of a Two-Sphere Swimmer. Klotsa D; Baldwin KA; Hill RJ; Bowley RM; Swift MR Phys Rev Lett; 2015 Dec; 115(24):248102. PubMed ID: 26705658 [TBL] [Abstract][Full Text] [Related]
19. Force and torque-free helical tail robot to study low Reynolds number micro-organism swimming. Das A; Styslinger M; Harris DM; Zenit R Rev Sci Instrum; 2022 Apr; 93(4):044103. PubMed ID: 35489898 [TBL] [Abstract][Full Text] [Related]
20. Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD. Popa CV; Zaidi H; Arfaoui A; Polidori G; Taiar R; Fohanno S Acta Bioeng Biomech; 2011; 13(1):3-11. PubMed ID: 21500758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]