These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23005220)

  • 1. Tunable heat transfer with smart nanofluids.
    Bernardin M; Comitani F; Vailati A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066321. PubMed ID: 23005220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical modeling for heat transfer in sheared flows of nanofluids.
    Ferrari C; Kaoui B; L'vov VS; Procaccia I; Rudenko O; ten Thije Boonkkamp JH; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016302. PubMed ID: 23005520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering.
    Gao JW; Zheng RT; Ohtani H; Zhu DS; Chen G
    Nano Lett; 2009 Dec; 9(12):4128-32. PubMed ID: 19995084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat current limiter and constant heat current source.
    Wu J; Wang L; Li B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061112. PubMed ID: 23005056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular dynamics-stochastic model for thermal conductivity of nanofluids and its experimental validation.
    Ghosh MM; Roy S; Pabi SK; Ghosh S
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2196-207. PubMed ID: 21449369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Van der Waals interaction-tuned heat transfer in nanostructures.
    Sun T; Wang J; Kang W
    Nanoscale; 2013 Jan; 5(1):128-33. PubMed ID: 23147396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.
    Nedea SV; van Steenhoven AA; Markvoort AJ; Spijker P; Giordano D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053012. PubMed ID: 25353885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superlattice patterns in forced thermal convection.
    Seiden G; Weiss S; Bodenschatz E
    Chaos; 2009 Dec; 19(4):041102. PubMed ID: 20059186
    [No Abstract]   [Full Text] [Related]  

  • 9. Porous materials for thermal management under extreme conditions.
    Clyne TW; Golosnoy IO; Tan JC; Markaki AE
    Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):125-46. PubMed ID: 18272456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube.
    Sobh AM
    Proc Inst Mech Eng H; 2013 Oct; 227(10):1073-82. PubMed ID: 23851658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced and reduced heat transport in turbulent thermal convection with polymer additives.
    Wei P; Ni R; Xia KQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016325. PubMed ID: 23005543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced thermal transport through a soft glassy nanodisk paste.
    Bhandari SS; Muralidhar K; Joshi YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022301. PubMed ID: 23496510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamo efficiency controlled by hydrodynamic bistability.
    Miralles S; Herault J; Fauve S; Gissinger C; Pétrélis F; Daviaud F; Dubrulle B; Boisson J; Bourgoin M; Verhille G; Odier P; Pinton JF; Plihon N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063023. PubMed ID: 25019895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled self-organization: thermal interaction between two liquid films undergoing long-wavelength instabilities.
    Vécsei M; Dietzel M; Hardt S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053018. PubMed ID: 25353891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is metal nanofluid reliable as heat carrier?
    Nine MJ; Chung H; Tanshen MR; Osman NA; Jeong H
    J Hazard Mater; 2014 May; 273():183-91. PubMed ID: 24735805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of convective heat transfer with Al2O3 nanofluids in the turbulent flow region.
    Kwon Y; Lee K; Park M; Koo K; Lee J; Doh Y; Lee S; Kim D; Jung Y
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7902-5. PubMed ID: 24266161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales.
    He Y; Donadio D; Lee JH; Grossman JC; Galli G
    ACS Nano; 2011 Mar; 5(3):1839-44. PubMed ID: 21309558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal transport in functionalized graphene.
    Kim JY; Lee JH; Grossman JC
    ACS Nano; 2012 Oct; 6(10):9050-7. PubMed ID: 22973878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models.
    Turkyilmazoglu M
    Comput Methods Programs Biomed; 2019 Oct; 179():104997. PubMed ID: 31443853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of electrokinetic properties of nanofluids.
    Murshed SM; Leong KC; Yang C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5966-71. PubMed ID: 19198333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.