These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 23005289)
1. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Gieseler J; Deutsch B; Quidant R; Novotny L Phys Rev Lett; 2012 Sep; 109(10):103603. PubMed ID: 23005289 [TBL] [Abstract][Full Text] [Related]
2. Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum. Conangla GP; Schell AW; Rica RA; Quidant R Nano Lett; 2018 Jun; 18(6):3956-3961. PubMed ID: 29772171 [TBL] [Abstract][Full Text] [Related]
3. Cooling of a levitated nanoparticle to the motional quantum ground state. Delić U; Reisenbauer M; Dare K; Grass D; Vuletić V; Kiesel N; Aspelmeyer M Science; 2020 Feb; 367(6480):892-895. PubMed ID: 32001522 [TBL] [Abstract][Full Text] [Related]
4. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Arita Y; Mazilu M; Dholakia K Nat Commun; 2013; 4():2374. PubMed ID: 23982323 [TBL] [Abstract][Full Text] [Related]
5. Direct Measurement of Photon Recoil from a Levitated Nanoparticle. Jain V; Gieseler J; Moritz C; Dellago C; Quidant R; Novotny L Phys Rev Lett; 2016 Jun; 116(24):243601. PubMed ID: 27367388 [TBL] [Abstract][Full Text] [Related]
6. Torsional Optomechanics of a Levitated Nonspherical Nanoparticle. Hoang TM; Ma Y; Ahn J; Bang J; Robicheaux F; Yin ZQ; Li T Phys Rev Lett; 2016 Sep; 117(12):123604. PubMed ID: 27689273 [TBL] [Abstract][Full Text] [Related]
7. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving. Li J; de Melo LF; Luo L J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448037 [TBL] [Abstract][Full Text] [Related]
8. Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature. Vinante A; Bignotto M; Bonaldi M; Cerdonio M; Conti L; Falferi P; Liguori N; Longo S; Mezzena R; Ortolan A; Prodi GA; Salemi F; Taffarello L; Vedovato G; Vitale S; Zendri JP Phys Rev Lett; 2008 Jul; 101(3):033601. PubMed ID: 18764254 [TBL] [Abstract][Full Text] [Related]
9. Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures. Tebbenjohanns F; Frimmer M; Militaru A; Jain V; Novotny L Phys Rev Lett; 2019 Jun; 122(22):223601. PubMed ID: 31283294 [TBL] [Abstract][Full Text] [Related]
10. Cryogenic ion trapping systems with surface-electrode traps. Antohi PB; Schuster D; Akselrod GM; Labaziewicz J; Ge Y; Lin Z; Bakr WS; Chuang IL Rev Sci Instrum; 2009 Jan; 80(1):013103. PubMed ID: 19191425 [TBL] [Abstract][Full Text] [Related]
11. Quantum control of a nanoparticle optically levitated in cryogenic free space. Tebbenjohanns F; Mattana ML; Rossi M; Frimmer M; Novotny L Nature; 2021 Jul; 595(7867):378-382. PubMed ID: 34262214 [TBL] [Abstract][Full Text] [Related]
13. Sub-kelvin optical cooling of a micromechanical resonator. Kleckner D; Bouwmeester D Nature; 2006 Nov; 444(7115):75-8. PubMed ID: 17080086 [TBL] [Abstract][Full Text] [Related]
14. A robust single-beam optical trap for a gram-scale mechanical oscillator. Altin PA; Nguyen TT; Slagmolen BJJ; Ward RL; Shaddock DA; McClelland DE Sci Rep; 2017 Nov; 7(1):14546. PubMed ID: 29109531 [TBL] [Abstract][Full Text] [Related]
15. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum. Hsu JF; Ji P; Lewandowski CW; D'Urso B Sci Rep; 2016 Jul; 6():30125. PubMed ID: 27444654 [TBL] [Abstract][Full Text] [Related]