BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23005373)

  • 1. Evaluating transport in irregular pore networks.
    Klimenko DA; Hooman K; Klimenko AY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011112. PubMed ID: 23005373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive transport in porous media: pore-network model approach compared to pore-scale model.
    Varloteaux C; Vu MT; Békri S; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023010. PubMed ID: 23496613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid micro-scale model for transport in connected macro-pores in porous media.
    Ryan EM; Tartakovsky AM
    J Contam Hydrol; 2011 Sep; 126(1-2):61-71. PubMed ID: 21802766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of three-dimensional porous media using a single thin section.
    Tahmasebi P; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066709. PubMed ID: 23005245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous dynamics of capillary rise in porous media.
    Shikhmurzaev YD; Sprittles JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016306. PubMed ID: 23005524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-time random-walk model of transport in variably saturated heterogeneous porous media.
    Zoia A; Néel MC; Cortis A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031104. PubMed ID: 20365694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images.
    Bijeljic B; Raeini A; Mostaghimi P; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013011. PubMed ID: 23410430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation studies of the conformation and lateral mobility of a charged adsorbate biomolecule: implications for estimating the critical value of the radius of a pore in porous media.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Colloid Interface Sci; 2005 Oct; 290(2):373-82. PubMed ID: 15925373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport coefficients of driven granular fluids at moderate volume fraction.
    Garzó V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012301. PubMed ID: 21867237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glass micromodel study of bacterial dispersion in spatially periodic porous networks.
    Lanning LM; Ford RM
    Biotechnol Bioeng; 2002 Jun; 78(5):556-66. PubMed ID: 12115125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of level-set method for deposition in three-dimensional reconstructed porous media.
    Vu MT; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053301. PubMed ID: 25353909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneities of flow in stochastically generated porous media.
    Hyman JD; Smolarkiewicz PK; Winter CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056701. PubMed ID: 23214900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breaking of non-Newtonian character in flows through a porous medium.
    Chevalier T; Rodts S; Chateau X; Chevalier C; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023002. PubMed ID: 25353566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore network model of electrokinetic transport through charged porous media.
    Obliger A; Jardat M; Coelho D; Bekri S; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043013. PubMed ID: 24827338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport in fractal media: an effective scale-invariant approach.
    Hernandez-Coronado H; Coronado M; Herrera-Hernandez EC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066316. PubMed ID: 23005215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Boltzmann simulations of binary fluid flow through porous media.
    Tölke J; Krafczyk M; Schulz M; Rank E
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network models of dissolution of porous media.
    Budek A; Szymczak P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056318. PubMed ID: 23214886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boltzmann equation and hydrodynamic fluctuations.
    Colangeli M; Kröger M; Ottinger HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051202. PubMed ID: 20364972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.