These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23005392)

  • 1. Synchronization of globally coupled two-state stochastic oscillators with a state-dependent refractory period.
    Escaff D; Harbola U; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011131. PubMed ID: 23005392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise-controlled oscillations and their bifurcations in coupled phase oscillators.
    Zaks MA; Neiman AB; Feistel S; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066206. PubMed ID: 14754296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entanglement tongue and quantum synchronization of disordered oscillators.
    Lee TE; Chan CK; Wang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022913. PubMed ID: 25353551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the critical coupling for oscillators in a ring.
    El-Nashar HF; Cerdeira HA
    Chaos; 2009 Sep; 19(3):033127. PubMed ID: 19792007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization regimes in conjugate coupled chaotic oscillators.
    Karnatak R; Ramaswamy R; Prasad A
    Chaos; 2009 Sep; 19(3):033143. PubMed ID: 19792023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Globally coupled stochastic two-state oscillators: fluctuations due to finite numbers.
    Pinto IL; Escaff D; Harbola U; Rosas A; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052143. PubMed ID: 25353775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization of pulse-coupled oscillators with a refractory period and frequency distribution for a wireless sensor network.
    Konishi K; Kokame H
    Chaos; 2008 Sep; 18(3):033132. PubMed ID: 19045470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: an experimental study.
    Temirbayev AA; Nalibayev YD; Zhanabaev ZZh; Ponomarenko VI; Rosenblum M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062917. PubMed ID: 23848758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization in coupled time-delayed systems with parameter mismatch and noise perturbation.
    Sun Y; Ruan J
    Chaos; 2009 Dec; 19(4):043113. PubMed ID: 20059209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discontinuous nonequilibrium phase transitions in a nonlinearly pulse-coupled excitable lattice model.
    Assis VR; Copelli M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061105. PubMed ID: 20365116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators.
    Yao C; Yi M; Shuai J
    Chaos; 2013 Sep; 23(3):033140. PubMed ID: 24089976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators.
    Yu N; Kuske R; Li YX
    Chaos; 2008 Mar; 18(1):015112. PubMed ID: 18377093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplitude death in networks of delay-coupled delay oscillators.
    Höfener JM; Sethia GC; Gross T
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120462. PubMed ID: 23960220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mean-field approximation of two coupled populations of excitable units.
    Franović I; Todorović K; Vasović N; Burić N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012922. PubMed ID: 23410419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-shifted synchronization of chaotic oscillator chains without explicit coupling delays.
    Blakely JN; Stahl MT; Corron NJ
    Chaos; 2009 Dec; 19(4):043117. PubMed ID: 20059213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting anomalous phase synchronization from time series.
    Tokuda IT; Kumar Dana S; Kurths J
    Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term fluctuations in globally coupled phase oscillators with general coupling: finite size effects.
    Nishikawa I; Tanaka G; Horita T; Aihara K
    Chaos; 2012 Mar; 22(1):013133. PubMed ID: 22463009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations.
    Peron TK; Rodrigues FA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056108. PubMed ID: 23214844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of common noise on phase synchronization in coupled chaotic oscillators.
    Park K; Lai YC; Krishnamoorthy S; Kandangath A
    Chaos; 2007 Mar; 17(1):013105. PubMed ID: 17411241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Athermal dynamics of strongly coupled stochastic three-state oscillators.
    Fernandez B; Tsimring LS
    Phys Rev Lett; 2008 Apr; 100(16):165705. PubMed ID: 18518222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.